

Development and Testing of a Hardware

Random Number Generator

LIDIIA LAZEBNIKOVA

Development and Testing of a Hardware Random Number Generator

2

	

1.	INTRODUCTION	 4	

1.1.	UTILIZATION	OF	RANDOM	NUMBERS	 6	
1.2.	PROBLEMS	GENERATING	RANDOM	NUMBERS	AND	GETTING	ENTROPY	OUT	OF	A	DETERMINISTIC	COMPUTER	 11	
1.3.	STRUCTURE	OF	THE	THESIS	 13	

2.	STATE	OF	THE	ART	 14	

2.1.	REQUIREMENTS	AND	TESTS	 14	
2.2.	PHYSICAL	SOURCES	OF	RANDOM	NUMBERS	 21	
2.3.	HARDWARE	RANDOM	NUMBER	GENERATORS	AND	GETTING	PHYSICAL	VALUES	INTO	BITS	 24	
2.4.	PSEUDORANDOM	NUMBER	GENERATORS	AND	LINUX	IMPLEMENTATION	OF	DEV/RANDOM	AND	DEV/URANDOM
	 28	

3.	TESTING	RANDOM	NUMBER	GENERATORS	 32	

3.1.	COMPATIBILITY	OF	RANDOM	NUMBER	GENERATORS,	WHICH	ONE	IS	BETTER	AND	THE	CRITERIA	 32	
3.2.	REQUIREMENTS	PER	PURPOSE	 35	

4.	RESULTS	 37	

4.1.	STATISTICS	OVER	SEVERAL	RUNS	AND	REPEATABILITY	 37	
4.2.	GRAPHICS	AND	CHARTS	 40	

5.	CONCLUSION	 52	

BIBLIOGRAPHY	 54	

Development and Testing of a Hardware Random Number Generator

3

“People believe the only alternative to randomness
is intelligent design.” – Richard Dawkins

“The only alternative to randomness is bad
randomness.” – Me

Development and Testing of a Hardware Random Number Generator

4

1. Introduction

Almost everyone has a vague idea of what a random number is. It is essentially a
number that cannot be reproduced by an obvious rule, e.g. if I asked you to generate
a number in your head and you would use your mother’s birthday multiplied by the
number of your former pets, it would make a good random number because that
information is not available to me. However, if I am holding up three fingers while
asking you to perform the exercise and coincidentally, the number you come up with
is, in fact, three, nothing about this interaction had been random.
Computers work in a similar way. Consider these two series of binary digits, each one
representing one bit of information:

01010101010101010101
01101100110111100010

The first sequence seems neat to a casual observer and the rule for its creation is
simple: it is the sequence “01” repeated ten times. If asked how the series might
continue, anyone could surmise that the next two digits would be zero and one. The
second sequence does not allow for a similar comprehensive pattern, the
arrangement seems hap-hazard and the sequence appears to be a random
assortment of zeroes and ones.
It was created by something as trivial as flipping a coin, the sides of which are
assigned with binary values.
A random binary sequence could be represented by the flips of a “fair coin” (the
probability of heads or tails is exactly the same) with sides that are assigned the values
of “O” and “1”. Each turn has to be independent from another. If these conditions
are met, the coin is the perfect random bit stream generator. [1]
Humans tend to be burdened by thought processes that lead to specific conclusions,
while the coin is not, thus making it, despite its imperfections, a better entropy source
– a controlled chaotic environment that creates a steady stream of random values.
Let us return to my request to think of a random number, this time ranging between
0 and 10. If the number you thought of is seven, it is perfectly predictable using
statistics. Seven is one more than the uncomfortable six and one less than the
disconcerting eight, making it just right, or so it seems, for most people. However, if
you did use an algorithm of your own choosing I did not think or know about, such as
the number of hours you have exercised this week, the result would surprise me,
making the outcome not guessable. This property is called independence — no part
of the sequence can be inferred from others parts of the sequence.
But suppose I have asked a lot in the past and my memory is excellent. Exercise, after
all, is a habit. If I discover a pattern with these numbers, the probability that I might
get the next one right rises. Suppose, that you do not like exercise and each time the

Development and Testing of a Hardware Random Number Generator

5

output is zero. That would make for terrible randomness, even if I do not know the
function that creates it. The property of randomness I am implying here is uniformity
— the frequency of occurrence of 0s and 1s has to be approximately equal.

Development and Testing of a Hardware Random Number Generator

6

1.1. Utilization of random numbers
In the following chapter, I explore:

• Uses outside of cryptography (gambling, simulations, Monte Carlo)
• Uses in cryptography and why
• Encryption
• Digital signatures
• One-time pad
• Authentication systems
• TLS
• Nonces and their use

The question is, why do we need random numbers?
How is unpredictable input valuable for our day-to-day life?
Intuition’s first notion is gambling. Games of chance live off unpredictability,
especially when it is not “hackable”. Counting cards, meddling with slot-machines
and exposing underlying algorithms of online poker are not illegal, yet highly frowned
upon and cost the gambling industry millions. Sometimes casinos resort to violence
in order to prevent such acts of “unfair use”. The distrust is mutual, many gamblers
are convinced that the slot machines are rigged in favor of the house and they may
be right.

A system that generates reliable randomness and is resilient against attackers would
redefine the word “chance” and renew the trust, should both parties be informed of
it, of course.
In the natural sciences, randomness helps simulate volatile physical processes, like
virus epidemics, beta decay of nuclei and insect reproduction. Simulation
experiments often extend to trying to predict the political landscape in any given
country. [1]

Theorists also use randomness in order to solve problems that are considered either
too difficult or impossible to solve using standard methods. The tool set they use is
called the Monte Carlo method or Monte Carlo experiments. There are three main
problem classes that rely on Monte Carlo: optimization, numerical integration and
drawing from a probability distribution. The method itself and the problems it helps
solving are widely considered incredibly complex. However, it is far less mystifying
than one would think. Eventually, it all comes down to four concise steps:
1. Identify the problem and build a model.
2. Define the parameters for each factor of the model.
3. Create random data for every parameter.
4. Simulate and analyze.

Development and Testing of a Hardware Random Number Generator

7

There is specialized software for this method and its practical application, one of the
examples is the Minitab Statistical Software.

The largest randomness-dependent party is computer science. There is research
being done on sorting algorithms that has delivered promising results. After all,
before order can be brought into chaos, chaos must first be created.
The most dominant field among those who use random numbers is cryptography.
They are so crucial to secure computer systems that without them, any form of secure
encryption stops being secure.
These systems offer protection against snooping and spoofing. Snooping means the
intercept of information either being exchanged between two participants or stored
somewhere, whereas spoofing is communications deception. [2]

Cryptography is a very old subset of computer science, thought to be originated in
the time of war. Until the late eighties, because cryptographic devices were
expensive, they were almost only used in the military, the governments and some
financial transactions. With the rise of faster CPUs, cryptography began touching
software. Nowadays, cryptography is everywhere. The largest volumes of
cryptographic devices are for communications such as WhatsApp and Skype, the
web, access cards, debit and credit cards, DRM for media copyright and hard disk
encryption. Very few of these offer end-to-end confidentiality or open their source
code, which makes the systems brittle. However, through massive interception with
trailblazing search techniques, intelligence agencies created a world-wide mass
surveillance grid and the need for good privacy is dire, despite of business models,
which gain from selling user data, exploiting Big Data in a massive way. Cyber security
professions now have the responsibility to restore the balance between citizens and
the union of governments and corporations. [3]

At the heart of every cryptographic system is the generation of unpredictable (i.e.,
random) numbers.
Let us start with basic cryptography. Even though it is impractical, ideally, a user
should choose a random password every certain period of time. It needs to be a
simple character string and if it is reusable, it also needs to be memorable. In this
case, the requirement for such a password is only that it is not guessable. Although,
for keys of fixed length, such as PINs, you would want the appearance of true
randomness, something that could pass statistical randomness tests.

There are generally two types of encryption: symmetric and asymmetric.
Symmetric encryption like one-time pads or the US Advanced Encryption Standard
(AES) means that two people or machines communicating privately know the same
secret key.

Development and Testing of a Hardware Random Number Generator

8

Asymmetric encryption suggests that the keys each person or machine has, comes in
pairs. One key is kept private and another is published to everyone who wants it.
Knowing the “public key” does not help to find out the one kept private and is also
of no use to someone who wants to intercept the communication.

One of the simpler asymmetric algorithms is RSA and it does need random data to
create every pair of keys. However, any number of messages can be encrypted with
the same key, so the need for randomness is less acute here.

In a situation where a key was used, an attacker would have to guess the key through
trial and error. Thus the probability of them coming up with the right key should be
acceptably low. This probability depends on the application.

The algorithm proposed by the US National Institute of Standards and Technology
needs good random numbers for each signature in their Digital Signature Standard
(DSS) [4].
Digital signatures notify the receiver that the message was written by none other than
the sender.

Encrypting with a one-time pad, which is theoretically the strongest technique in
encryption, needs equal randomness for each message. A plaintext is paired with a
secret key completely comprised of randomness. Then each bit of the plaintext is
encrypted by adding the corresponding character in the key to it in a modular way.
Now, what needs to be mentioned is, that this type of encryption is far from new.
However, it is incredibly effective and thorough.

Despite of that, it is not the standard practice. The reason why is because it costs a
lot of resources. In order to be secure, one-time pad needs to have just that – a one-
time key, never to be used again. That creates a steady need for randomness that
cannot be quite satisfied.

The following example is taken from a fairly recently de-classified document, which
consists of a series of lectures given by David G. Boak in 1966 to the interns and
employees of the National Security Agency. Boak had participated in the
development of U.S. Communications Security for over 20 years. [5]

Development and Testing of a Hardware Random Number Generator

9

Figure 1: DIANA [5]

One of the oldest types of one-time pads is depicted in Figure 1. Widely used by the
NSA in the 70s, DIANA is a cipher system that consists of pages after pages of random
numbers or letters. Ever since the one-time pad has undergone a lot improvement.
The version after DIANA used by the NSA was ORION and was three times as fast.
The system uses carbon paper and two pages: one with the key and one with the
cipher, the first over the latter. The key is simply the alphabet repeated in every line
in a row. To encipher, you circle each letter (only one per line) on the key and the
mark appears on the cipher. However, 100 words encrypted with DIANA turned to
10 and on account of gaining speed, the NSA also had to print more paper. It was
efficient for short messages and when no machines were available.

The next type of manual systems that use randomness are authentication systems.
They establish that any received communication is genuine and not “spoofed.” It is
timeless in its application and centuries-old.
It has two phases: challenge and response, where sender and recipient can
interrogate each other and establish that both are who they say they are before they
would communicate. It is incredibly important in communication where either not
each or none at all messages are encrypted.

Any HTTPS session starts the following way: first, the web browser introduces itself to
the server. It offers a package that includes information about which version of SSL it
wants to use. Then the server responds with a similar package, which includes its SSL
certificate. Finally, the web browser checks if the certificate is valid and generates a
so-called “pre-master secret”. This key secures the following transfers. It is very
important that it is unpredictable for the connection to be secure. Every browser
generates its own pre-master secret for each session with each server. Considering

Development and Testing of a Hardware Random Number Generator

10

that a session only lasts until the user becomes bored and switches to another
webpage, there are a lot of sessions.
The pre-master secret is a 48-byte sequence. Of course, the first two bytes are, by
convention, the TLS version. It still leaves 46 bytes of randomness, but it is not the
end. A Pseudo-Random Function (PRF) is used to generate a different key combining
the secret, the ASCII label and the seed data from the Message Authentication Code.
This function may be defined, but by our own definition, it is still unpredictable to any
attacker and therefore generates even more randomness. The key that results from it
is the 48-byte “master secret”. [6]
According to statista.com, the rough estimate of unique monthly visitors to
amazon.com is a number close to 200 million. Under the assumption that users tend
to log in more than once even during one day, the estimated number of TLS
handshakes that day is in the millions. This means that for Amazon, somewhere
between 1 GB and 10 GB of randomness a day in the US alone are needed. There is
a million top sites that use the TLS protocol, assuming they are visited as frequently
as Amazon, ten million GB of randomness are needed in 24 hours, that still makes
roughly 120 GB per second of world randomness demand.
That reveals the sheer number of random bits that need to be generated every day
in order to secure the connection between the user who only intends to purchase
something and the server, which is willing to sell. Facebook quantifies this number by
a yet unknown factor.
Other authentication protocols also use randomness.

A nonce is a number that is only allowed to be used once. The sender generates a
string of randomness devoid of information and appends it to a message. Each
message gets its own randomness. The receiver recognizes the validity of the
message because at each turn, the “randomness signature” is known to them. This
prevents something called a replay attack, when a signature is extracted from an old
message by the attacker, stamped on a falsified message and accepted by the
receiver.
 Of course, time-stamping can prevent such an attack, but it is not a very secure
process because of how transparent it is. [2]

Development and Testing of a Hardware Random Number Generator

11

1.2. Problems generating random numbers and getting
entropy out of a deterministic computer

This chapter contains:

• Determinism and nondeterminism
• How a computer can contain nondeterminism?
• Seeds and pseudorandom functions

The oldest philosophical problem humanity has dealt with is the notion of free will
versus destiny. When I choose a complex and particular coffee order, is it
completely and utterly my decision or was it whispered to me by a combination of a
higher power and my body’s chemical processes. Some argue the former does not
exist, some argue — the latter. Some think that both are the same. Some choose to
refrain from talking about it.

Computers do not have free will. According to Microsoft, not yet. They use a
sequence of actions that was programmed into them — an algorithm. Therefore, in
theory, every algorithm inside a computer, provided they use the same input,
should follow the same steps and return the same output. It is called determinism
and algorithms that match this description are called deterministic algorithms. All
computer algorithms are deterministic, unless they:

A) use an external kind of input, something that does not repeat itself.
B) are timing-sensitive. Like in the case of multiple processors that access the same
data at the same time. If they edit it independently from one another, the order in
which they have access will influence the data itself.
Or C) a hardware error changes them unexpectedly.

So how does a computer achieve simulated free will? Mostly A).
Option B is not very convenient. Relying on two processors “crossing swords”
would not produce a lot of randomness. Using the time (and/or date) of the starting
process would not be non-deterministic because the time never is. Option C is
simply dangerous.

In order to practically implement option A, a starting value is used and it is called a
seed. Since computers are numbers-based machines, this seed is usually a number
picked out of a pool of unrelated numbers. Then a deterministic algorithm derives
an entire series of seemingly unrelated numbers from this seed. Because this
algorithm is deterministic in nature but produces output that only simulates non-
determinism, it is called a pseudorandom function. The numbers generated by it are
called pseudorandom numbers, because they look random, but are not, as opposed

Development and Testing of a Hardware Random Number Generator

12

to true random numbers that are not generated inside a computer, but are merely
collected inside one.
The difference between these is that the pseudorandom number sequence would
eventually repeat. It is periodic in nature because the assortment of seeds it has is
finite. The number of seeds depends on the length of each seed. So for a
pseudorandom sequence to be virtually indistinguishable from a true random
sequence the seed length would have to be significant.

Development and Testing of a Hardware Random Number Generator

13

1.3. Structure of the thesis

This thesis explores the nature of randomness through the scope of statistical
properties and explores the battery of tests suggested by the National Institute of
Standards and Technology. Furthermore, I look at different physical phenomena that
can be used as sources for random numbers and explain the difference between true
random and pseudorandom methods of number generation, finishing with hands-on
testing of several hardware and software solutions.

Development and Testing of a Hardware Random Number Generator

14

2. State of the art

2.1. Requirements and tests

In this chapter, I explore:

• The probabilistic method
• Chi-Squared Test
• Null hypothesis
• Confidence interval
• Critical values
• P-values
• Frequency Test
• Runs Test
• Binary Matrix Rank Test
• Tests with Random Walks
• Data Compression

So how does one evaluate a sequence of random numbers?
By ways of statistics, the means most frequently used is the probabilistic method.
Suppose, we use a different method of random number generation but quite similar
to a coin — a set of dice. There are six possible events: rolling a one, two, three,
four, five or six. And the probability of achieving each event is the same — 1/6. The
distribution of this probability is shown in Figure 2 under “even distribution”.

Figure 2: Even distribution [7]

If we have two dice instead of one, everything changes. The number of events is
increased. The lowest sum achievable is now two and the highest — twelve. Also
seeing that we do not distinguish between the two die, we have many different
combinations for the same sum, e.g. the number 7 can be achieved as follows: (1,6),
(2,5), (3,4), (4,3), (5,2), (6,1). Now that we have many ways of achieving the 7 with the

Development and Testing of a Hardware Random Number Generator

15

same probability, it becomes our most likely event. The distribution would look like a
triangle, the value for 7 being at the top.
The more dice we roll simultaneously the more discrete events we have. According
to the de-Moivre-Laplace theorem, the triangle becomes a graph presented in Figure
3, when the number of discrete events reaches infinity. This Bell curve distribution is
a common name given to a normal distribution. And it is known as “normal” because
it is very frequent in nature.

Figure 3: The Bell Curve [8]

Since nature is the number one generator for randomness, the probabilistic method’s
principle lies in comparing the occurrence of events inside a random sequence to the
normal distribution. It is not the most exact method and the accuracy is reduced with
the sample size, but it is a good way to determine whether or not the randomness
source is flawed.
The test that determines that is known as the Chi-Squared test. It is represented
through a simple equation:

Developed by Karl Pearson in 1900, this test is applied to sets of categorical data
and it establishes whether or not the difference between the separate sets arose by
chance or if it was influenced by a variable.
The equation is constructed in the following way:

• is Pearson’s cumulative test statistic. It is the result to be compared to an
acceptable value.

• is the number of observations of a certain type i. Essentially, it is the
number of occurrences of a certain event that were recorded

Development and Testing of a Hardware Random Number Generator

16

• Is the expected number of occurrences of the same event, derived from
its probability

Suppose we flip a fair coin a hundred times. There are two possible events in this

case — heads and tails. The probability of each occurring is exactly !
"
. Should I

observe that I got tails 38 times, the probability seems to not match the observed
data entirely. In order to accept or reject the coin itself, I could use this test to
determine if it is skewed.
First, I would use a null hypothesis. Due to the simplicity of the given example, this
step seems to be trivial, but in multivariable problems, it is not. The null hypothesis
is a statement that the test confirms or denies. Usually, it is that there is no
significant difference between the observed and expected frequencies of the event.
In other words, the coin is fair and I am flipping it correctly.
Before the calculations are made, two significant factors need to be defined — the
degree of freedom and the confidence interval.
In terms of the degree of freedom, one has to have at least two outcomes. In this
case, we have exactly two — heads and tails. The degree of freedom is one less
than the number of possible outcomes and would equal 1.
The confidence interval, also known as alpha, is a lot simpler to determine, it is
simply how sure you wish to be. In case 95% certainty is enough, the confidence
interval equals 0.05.
From these two values, using the Student’s t-distribution, the critical value is
calculated. With the confidence interval of 0.05 and one degree of freedom, the
value is 3.84, as found in Table 1, which is known as the T table.

Development and Testing of a Hardware Random Number Generator

17

Table 1: Student’s T-table [9]

Should the calculated be higher than 3.84, we would be forced to reject the null
hypothesis. [7]

So 38 heads and 62 tails from 100 coin flips would give the value of 5.76 using
this calculation:

Ergo, the null hypothesis is rejected and there is either something wrong with the
coin or the way I flip it and we are 95% sure of it.
In randomness testing, the null hypothesis is that the data is random and the
confidence interval is typically 0.05. It does not mean that the statement of the null
hypothesis is 95% probable to be true, but it does mean that 95% of the data can
be considered random.

Development and Testing of a Hardware Random Number Generator

18

An important aspect to know of is the distinction between one- and two-tailed tests.
In the table shown above, I have taken the value meant for a two-tailed test and the
Chi-Squared test introduced by Pearson examines one-tailed events.
The distinction, while important, only needs to be made once in randomness
testing.
The Bell Curve depicted in Figure 3 represents the probability distribution for most
natural occurring events. The events far left and far right to the curve are the events
least likely to occur. In terms of randomness, these are the events of the given
generator either being perfectly random or completely useless. As we see, testing is
not about these binary decisions, but how probable it is for one of these extreme
events to occur with the null hypothesis in mind. Since both of these extreme events
are of interest to us, the tests are called two-tailed.
The value for this probability is called the p-value. For random number generators,
the p-value is chosen to be the probability that the sequence being tested appears
to be perfectly random. P-values range from 0 to 1. [8]
These are the notions with which the NIST statistical suite operates. Developed to
select and test random and pseudorandom number generators, this test suite useful
in determining whether or not a generator can be used for cryptographic
application. It is stressed, however, that no amount of statistical testing can serve as
a substitute for cryptanalysis. Since sample size is directly proportional to the
accuracy, this test suite also demands a large sequence length (of the order of
thousands to millions of bits). Some of these tests can be used for smaller values,
but it is discouraged for the sake of accuracy.
On the one hand, some of the 15 tests provided by NIST test for uniformity. These
are the Frequency Test, the Runs Test and the Binary Matrix Rank Test.

• The Frequency (also known as Monobit) Test focuses on the numbers of
zeroes and ones for the entire sequence. Test No. 2 applies the same test
within M-bit blocks, where the value of M can be changed in the settings.
This is a more or less direct application of the Chi-Squared test explained
above.

• The Runs Test and its immediate follower — No. 4 — count the runs within a
sequence, while No. 4 also divides that sequence into M-bit blocks. A run is
an uninterrupted stream of identical bits. It can either be a sequence of just
ones, or just zeroes. The number and length of these runs have to match the
expectancy within a random sequence. The prerequisite for this test is the
Frequency test. The principle is that the value 0 is added when two
neighboring bits are the same and the value 1 is added if they are not. The
calculated sum is used to determine the p-value.

• The Binary Matrix Rank Test focuses on the rank of matrices in the sequence,
it is also a fairly old test that was present in the DIEHARD suite computed by
George Marsaglia in 1995. [9]

Development and Testing of a Hardware Random Number Generator

19

Testing for uniformity is not difficult. But the most crucial property of random
sequences is the lack of patterns, or uniformity. Predicting periodic features such as
that is more complex. Human beings are great at it and that is why it is so easy for
us to tell when something genuinely appears random. For instance, just by looking
at a bitmap made up of binary values (black dots representing ones and white dots
representing zeroes, or vice versa), we can accurately surmise randomness.

Figure 4: A bitmap generated from randomness that comes from
atmospheric noise [10]

Figure 4 shows a random sequence converted into a bitmap, and at first glance, it
looks sufficiently random. If I had said that it is a pseudorandom sequence, the
more you would look at it, the more patterns you would begin to discover. This
demonstrates the problem with the visual method: human beings are incredibly
slow at discovering patterns; it can be proven by watching someone do a word
search puzzle.
Unfortunately, there are no computer algorithms that can accurately determine what
feels random. But fortunately, patterns can be detected using random walks — a
mathematical way of describing a path that consists of random steps. E.g., a
molecule’s way through a liquid of a gas can be considered a random walk, or in
another example, an animal looking for food. This term has been introduced by the
very same Karl Pearson in 1905, who must have accomplished everything in the field
of randomness. Often, random walks are assumed to be either Markov chains or
Markov processes and sometimes, they are depicted as graphs, the properties of
which can be studied using computer algorithms.
Looking at randomness from a purely statistical point of view has its merits.
However, it limits you in seeing the purpose of randomness. The desired property
of random numbers is that their occurrence is unpredictable, and what better way of
assessing it than from an information technology point of view?

Development and Testing of a Hardware Random Number Generator

20

Data compression is the process of converting a data stream into another of a
smaller size. Today, our life without it is unthinkable. Not anymore because we have
limited storage — since the limit to the storage we can have is now only defined by
our understanding of it. Data compression has made communication a lot easier.
The idea of judging how random something is with it lies in trying to compress it.
There are many known methods of data compression. Based on different ideas and
suitable for different types of data, they also produce different results. Nonetheless,
data compression operates under the same principle — removing redundancy. Any
nonrandom data has some structure and it can be used to create a smaller
representation of the data to be compressed.
For example, the English language uses the letter ‘e’ a lot. The letter ‘z’, on the
other hand, not so much. This is called alphabetic redundancy. It suggests, if you
would assign variable-sized code to each letter of the alphabet, that ‘e’ would get
the shortest code and ‘z’ would get a longer one. There is another kind of
redundancy called the contextual redundancy, in our example it is represented by
the fact that the letter ‘q’ is almost always followed by ‘u’.[11] The English language
has a method of compression called the textspeak. Since the invention of Short
Message Service (SMS), communicating became instant and in order to speed up
the process of composing a message, people created acronyms for most common
words, often eliminating the vowels.
In 2003 a rumor began that a teenager had written an essay entirely in textspeak.
The reported extract began like this:

MY SMMR HOLS WR CWOT. B4, WE USED 2GO2 NY 2C MY BRO, HIS GF & THR 3 :-@ KIDS

FTF. ILNY, IT'S A GR8 PLC.

It can be translated as follows:

“My summer holidays were a complete waste of time, Before, we used to go to New
York to see my brother, his girlfriend and their three screaming kids face-to-face. I

love New York. It’s a great place.”

If a binary sequence needs to be evaluated for randomness, one can just simply ask
if it can be compressed through conventional algorithms. The answer is usually yes,
or no. The answer depends on whether or not random data has structure, which it
by definition has not. Thus, we cannot have a margin for acceptable non-
randomness with perfection squarely out of our grasp.

Development and Testing of a Hardware Random Number Generator

21

2.2. Physical sources of random numbers

In this chapter, I introduce:

• Thermal noise

• Avalanche noise

• Nuclear decay

• User input

• Air turbulence

Entropy sources largely depend on their application. Once enough randomness is
collected, it can be used to produce even more pseudo-randomness, after it is de-
skewed or mixed. [2]

Particularly desirable are sources of entropy rooted in physical phenomena. The
emission of radiation was the one of the first of such phenomena that were
proposed. Though reliable in randomness, it does use specialized hardware not
integrated in personal computers. [12]

There are entropy sources that do not have quantum-random properties and are
therefore easier to detect. They are sometimes skewed when the temperature of
the system is lowered, though most systems have countermeasures in place. Such
systems use, e.g. thermal noise.

Thermal noise or Johnson-Nyquist noise exists in electronic circuits. It was first
recognized by John B. Johnson in 1926, but the one who explained its origin was
Harry Nyquist. This noise is created when particles (typically electrons) that carry
charge are exposed to thermal energy, i.e. Heat. These begin to vibrate and the
higher the temperature they are exposed to, the higher the thermal noise level. In
its nature, it is completely random, which is excellent for conversion into random
numeric values. The other excellent thing about it is that it exists in any electrical
circuit, no matter the quality of equipment. The higher the resistance, the higher the
temperature, the more thermal noise. [13]

Development and Testing of a Hardware Random Number Generator

22

Figure 4: Noise signal visible with an oscilloscope [12]

The advantage of thermal noise as an entropy source is that there is not a lot of
hardware components needed. That means that it could easily be integrated into
computer hardware.

Noise generated from an Avalanche diode is also common, i.e. Avalanche noise. It
is a form of electric current that collects itself in semiconductors or insulators
through electric fields. A designated avalanche diode is built to prevent hot spots
from current concentration and still experience avalanche breakdown in a controlled
environment.

Atmospheric noise and waves from radio transmissions detected by a receiver
attached to a PC is another source of entropy that is quite rich. Lightening noise,
static, VHF waves are captured and transferred into numbers. This source can be
vulnerable to interference, but usually, it is very reliable. [14]

Entropy sources with quantum-random properties focus on atomic and sub-atomic
effects, relying on the theory of quantum mechanics — that such physical
phenomena as the nuclear decay of atoms are random and cannot be predicted.
For that reason, outcome of such generators is model for all other generators.

Nuclear decay, of course not of any hazardous isotopes, can be detected by a
Geiger counter attached to a PC. Some commercial smoke detectors carry a very
small quantity of americium-241 — a radioisotope, which ionizes air. This isotope is
produced by nuclear reactors when plutonium is bombarded with neutrons. In turn,
it emits alpha particles and gamma radiation in order to become neptunium-237.
The principle of such smoke detectors is that alpha particles from the isotope
collide with oxygen and nitrogen inside of a specifically designed small chamber
inside the smoke detector, creating electric current through ionization. Smoke
neutralizes ions, decreasing the electricity, at which point the alarm goes off.

Often user input is used as an entropy source, e.g. SecurPC — an RSA toolkit
running under Microsoft Windows 95 — generated random seeds based on
keyboard and mouse timings. Every now and then, the user was animated to press
“random” keys on the keyboard for a few minutes. This sort of approach might not
have been simply annoying, but also questionable. Reliance on user-generated

Development and Testing of a Hardware Random Number Generator

23

randomness should be avoided, since it vulnerable to attacks, providing a false
sense of safety.

Some entropy algorithms use computer hardware but also rely on physical
phenomena. For example, AT&T’s truerand that exploits the CPU clock and the real-
time clock and the fact that they are not connected. It uses a counter switching from
Busy to Waiting until a timer interrupt terminates the loop, thereby pitting the real-
time clock signal against the CPU signal, using their differences to its advantage.

Air turbulence in hard drives is another entropy source that is based on computer
hardware, unfortunately, it is becoming outdated. Using the disk’s rotation and the
high-speed turbulence in HDD drives, one of the ways of generating randomness is
measuring the read/write times.

It is important for software creation to avoid specialized hardware. Suppose, a virus
is transferred unwittingly from a machine with specialized randomness hardware to
one without, the software in play cannot assume that such hardware is present,
much like human beings carrying a virus they have been vaccinated against should
still exercise caution.

Development and Testing of a Hardware Random Number Generator

24

2.3. Hardware random number generators and getting physical
values into bits

In this chapter, I investigate:

• Random processes
• Early hardware random number generators
• OneRNG
• XR232
• Atmospheric noise, radio frequencies

As we have previously established, nature is full of random processes. In urban
culture, we surround ourselves with predictability: a bus arriving according to
schedule, a clock striking every hour, coffee maker whirring at preset time, etc.
However, hard as we try to make our environment predictable, unpredictability
breaks through in weather changes, air currents, grass growing in most unwelcome
places, even natural disasters. It is inconvenient, but it is also something we have
never lived without.

Random processes repeat themselves and it is difficult to find a deterministic
pattern in their output. [15]

Number generators based on random processes are known as hardware random
number generators or TRNGs (True Random Number Generators). There is no
randomization algorithm used, since the data extracted from the generator is
already random in theory. Practicality and security usually do not rely on theoretical
randomness, though.

One of the earlier ways of producing randomness was, of course, based on
gambling. The machines that used numbered ping-pong balls with blown air that
were withdrawn from a mixing chamber were built similarly to those used to play
keno or select lottery numbers.

Development and Testing of a Hardware Random Number Generator

25

Figure 5: Random number generator
proposed by Richard P. Dinnigan in 1987
to the US Patent Office [14]

The method described and depicted in Figure 5 offers reasonable results in terms of
randomness but unfortunately, is very slow.
Modern approaches mostly use specialized hardware that can be connected to a
computer processor. One such generator was funded on December 21st, 2014 by a
very successful campaign (less than a week) on Kickstarter. While being open source
in terms of hardware design and firmware, the small generator about the size of a
USB data stick also possesses a removable radio frequency noise shield to protect
from physical attacks. As another security measure, OneRNG’s board cannot be
reprogrammed over USB by errant software. However, the suite it was created with
is included in the shipping parcel, as well as a suitable cable. One unit generates
320 000 bits per second. [16]
The data can be used directly, but it is recommended to feed it into a kernel
random number generator’s entropy pool, such as the Linux/Unix implementation
under /dev/random or /dev/urandom, which will be discussed in the following
chapter.
OneRNG uses two sources to generate randomness — an avalanche diode and a
radio frequency receiver. Data is sourced one byte at a time from both sources and
put into a so-called “whitener”: a CRC16 generator that performs cyclic redundancy
checks. It means that bits are merged and XOR’ed together to improve uniformity.
While OneRNG is fairly inexpensive, it is calibrated in such a specific way, it cannot
be used for any other purpose but to generate random numbers. Since computers
are growing exceedingly small, there is no room for specialized hardware, especially
because using it as a selling point does not attract the average consumer. And what
does not attract the average consumer is missing in most computers using a specific

Development and Testing of a Hardware Random Number Generator

26

kind of cryptographic software that relies on said specialized hardware. Without it,
this software is in great peril with so many weak links in its chain.
So this brings about an interesting question: can one recycle cheap ubiquitous
components and make a true random hardware generator accessible to any
computer system no matter the budget?
The answer is yes, there is such a solution made out of very cheap components, the
reliability of which will be tested in the following chapters.
XR232 is a true random number generator that delivers independent random data
to a host computer. It uses open-source software and has a very transparent and
well-tested circuitry. [17]

Figure 6: The schematics for the XR232 zener-powered random number generator by Julien Thomas
[16]

Avalanche and Zener breakdown are essentially the same effect happening in two
different components: the avalanche diode and the the Zener diode. However, one
of them lasts longer and is considered more stable — the Zener diode.
The Zener diode (XZD in Figure 6) is sometimes called the breakdown diode
because it is designed to operate mostly in the breakdown region. So this effect is
not only useful, it is desirable. To obtain the Zener effect, the diode is used in a
reverse bias mode. That means that unlike the current traveling in a normal fashion
— from component A to component B, the current is traveling through the Zener
diode in a B to A fashion. The diode thereby connects to the negative supply. In this
mode, no matter how much voltage is at the diode, it only lets a stable low voltage
pass through. This saves the circuit from damage.
Zener noise is produced at the beginning of the Zener effect, where electrons and
protons collide with the atoms in the crystal lattice of the Zener diode creating an
electric field. If this process happens to spill over into an avalanche effect, random
noise spikes may be observed.

Development and Testing of a Hardware Random Number Generator

27

The noise serves as a bit input into the semiconductor (IC3). The job of this
component is to digitize the noise. The now digitized noise is forwarded to the
converter (marked with IC2 in Figure 6) it formats the signal into a readable protocol
— RS232. To ensure the safety of the recipient device, this circuit contains the
optocouplers, also called the optical oscillators. They are used to prevent high
voltage from affecting the system. [18]
Another way of using inexpensive components efficiently, is the ability to utilize
them for a different purpose. That is the case with software defined radio.
An rtl-sdr dongle receives radio frequency signals and can be routed to your
computer with a software interface. It allows the user to listen to amateur radio,
watch analog television, listen to FM broadcasts and a number of other things, such
as monitoring first responder and aircraft frequencies. But the radio frequency noise
is also caused by natural occurrences, such as weak galactic radiation and stronger
local as well as remote lightning strikes. This provides a great deal of entropy for a
random number generator.
Of course, the dongle cannot get down to the frequencies necessary for sampling
atmospheric noise, which is about 100 KHz to 10 MHz and above 10 GHz. But in
turn, it can sample cosmic noise as well as urban and suburban noise that is man-
made, solar noise, thermal noise and other terrestrial noises within the range of the
dongle.
These dongles are quite cheap, you can connect them via USB and they use an
antenna. With a standard telescoping antenna about 3 Mbps of true random data
can be observed. [19]
The data will be tested in the following chapters. But the preemptive visual analysis
looks good so far, and can be looked at in Figure 7.

Figure 7: Visual analysis of rtl_entropy generated data [17]

Development and Testing of a Hardware Random Number Generator

28

2.4. Pseudorandom number generators and Linux
implementation of dev/random and dev/urandom

In this chapter, I explore the pseudorandom number generators and the following
keywords:

• Principle
• Obvious disadvantages
• Lehmer (RANDU)
• ENIAC (von Neumann)
• Xorshift
• Cryptographically secure PRNGs
• LRNG

Suppose there is a relatively small number of truly random numbers that were not
generated using the following method. These random numbers already exist as a
base upon which further calculations are made. One value, at a time, is extracted
from the pool and used as a seed.
A deterministic algorithm accepts the seed as its initial state and generates a
sequence of numbers that have to look like they are random. The same seed always
generates the same sequence.
If it does not sound like a good idea for cryptography, that is because it is not.
Simple PRNGs are not cryptographically secure and fail miserably when tested for
patterns. They are also periodic, which means that sequences tend to repeat
themselves after a certain time because the pool is relatively small. Large generated
sequences tend to be less uniform. In other words, small sequences appear random
while certain parts of larger ones do not. Another disadvantage is that there are
correlations in neighboring values.
One bad example of a horrible bunch is RANDU. It is in its principle a Lehmer RNG,
also referred to as Park-Miller RNG. It is a type of linear congruential generator that
uses the following general formula:

RANDU’s specifications are:
g = 65539
n = 231
The seed numbers for this generator are always odd. And the sequences generated
fall in the range between 1 and 2(31-1).
The problem with this generator is depicted in Figure 8.

Development and Testing of a Hardware Random Number Generator

29

Figure 8: Three-dimensional plot of 100,000 values generated by RANDU. Each point represents 3

neighboring values. Uploaded by Luis Sanchez. [20]

The flaw clearly lies in the recurrence. For each three consecutive values, provided
we expand the quadratic factor, the recurrence only comes down to:

So the results fall in 15 planes. [20]
Lehrer RNGs were important for over fifty years because none other were available.
At the end of the 20th century, seeing that linear congruential generators achieved
dubious results, the scientific community distanced itself from them with Mersenne
Twister and the WELL family generators, only to be brought back to them by
George Marsaglia in 2003 with his Xorshift generators.
Xorshift means that each next number in the sequence is the repeated taking the
“exclusive or” of a number with a bit-shifted version of itself. This PRNG class is
incredibly fast even on slowest processors (thanks to pipelining), but it is not
cryptographically secure either.
For CSPRNGs or cryptographically-secure PRNGs, ideally, one would need a high-
quality entropy source. In other words, a TRNG-generated source of random
numbers. Plus, in order to be cryptographically secure, they have more
requirements than PRNGs.
Firstly, the next-bit test. Proven by Andrew Yao in 1982, should a generator pass the
next-bit test, all other polynomial-time statistical tests for randomness would not be
a problem. The test establishes, whether or not, derived from the indefinite number
of known bits, the next one could be guessed with the probability of success better
than 50%.
Secondly, “state compromise extensions”. Suppose the seed used in the running
sequence is a bit of pi. Suppose it is four. Should the attacker know the running

Development and Testing of a Hardware Random Number Generator

30

sequence and the seed, they should not be able to figure out the previous
sequences and their respective seeds. With pi, that is not a given. A PRNG deriving
sequences from pi may pass the next-bit test, because pi appears to be a random
sequence, but the algorithm still is not cryptographically secure.
Most PRNGs indeed are not. Despite offering seemingly random sequences, they
can be reverse engineered, allowing the attacker to see all past random numbers.
CSPRNGs are specifically engineered to prevent that. [21]
Often, pseudorandom numbers appear to be more random than those from
physical sources. The construct of a pseudorandom number generator is more
complex and has multiple layers, each introducing more randomness. Each layer
contains a transformation that can eliminate statistical auto-correlations between
starting and end values. This way the output of a PRNG may have better statistical
properties and be produced faster than a TRNG.
One implementation widely used in Linux- and Unix-based operating systems is the
Linux pseudorandom number generator (LRNG). This random number generator
resides in the kernel of most UNIX-based systems under /dev/random or
/dev/urandom.
E.g. Some versions of Linux have this generator with an entropy pool of 512 bytes
(128 different words of 4 bytes each). This pool is disturbed whenever an event,
such as disk drive interrupt, occurs and the time of the event is added to the pool
via a XOR operation, after which the pool is stirred with a primitive polynomial of
degree 128.
Each time entropy is added to the pool in this way estimates the amount of true
randomness of the input. There is an accumulator in the pool itself that estimates
the randomness contained there.
These events come from several sources, such as:

• Keyboard interrupts. Not the content of the keystrokes adds entropy to the
pool, but the inter-keystroke time.

• The mentioned above disk activity, among other things — disk completion,
because a system accessed by a human being is statistically likely to have an
unpredictable pattern of disk activity.

• Mouse motion, where both mouse position and timing are added in.
When random data is taken out of the generator, the pool is hashed with the SHA-1
algorithm. The output of this algorithm is 20 bytes long, but if more is required,
then the output is stirred back into the pool and new hash is performed to get the
next 20 bytes. The more bytes are taken from the pool, the less entropy is
expected.
To make sure that the pool is random at system startup, the scripts of starting and
shutting down the generator save the pool to the disk and then read this file at
system startup.
Now, what is the difference between /dev/random and /dev/urandom, since we are
clearly dealing with the same random number generator?

Development and Testing of a Hardware Random Number Generator

31

/dev/random blocks when the pool accumulator shows that the estimated
randomness inside the pool is zero. The more events occur the more data becomes
available at /dev/random. So it is better for generation of long term keys, provided
that there is enough data in the pool.
/dev/urandom works exactly like /dev/random, but it does not block. It provides
data even if the entropy estimate equals zero. This is okay if used for session keys or
when it is not possible to wait for more random bits. The risk of continuing to take
data from the pool’s entropy when the estimate of randomness is small because
even if the attacker can get past output, reversing SHA-1 to get the seeds is an
issue. The algorithm was designed to be non-invertible. [2]
So which is better?
There is no definitive answer to this question. Since /dev/urandom does not block
when it deems the entropy to be insufficient, it seems to be insecure to a casual
observer. It is not. Both use a generator that is cryptographically secure. It is
recommended to use /dev/urandom for “normal” cryptographic purposes by quite
a few experts in the field. But why?
The gold standard in true randomness is the quantum effect, but the purpose of this
randomness is mostly cryptography, where these perfectly random numbers are fed
into algorithms that can only offer computational security at best and not
information-theoretic security, except for Shamir’s Secret Sharing and the One-time
pad. The latter is simply impractical.
The rest, being AES, RSA, Diffie-Hellman and so forth, do not protect from an
adversary that disposes of unlimited computational power. They are still used
because it is not presumed that in order to break a key, all computers in the world
would be used together for a period of time longer than the existence of the
universe.
There is no way to predict the development of computer systems in the future. But
for the sake of cryptography right now, computational security is good enough and
so is /dev/urandom. [22]

Development and Testing of a Hardware Random Number Generator

32

3. Testing random number generators

3.1. Compatibility of random number generators, which one is
better and the criteria

The following chapter will contain data on:

• Unpredictability and goodness-of-fit

• Methods for improvement

• Data rate efficiency

• Price value

• Security

• Compatibility of random number generators

The previous chapters show that there is a wide variety of random number
generators. But not all are created equal.

It is self-evident that only random number generators with solid properties in theory
should be used, also they should have successfully passed a battery of tests. Bias
within the generated sequences can render a random number generator useless for
most applications.

In order to empirically test random number generators, it is best to generate
sequences from each of them and then apply various distributional and randomness
tests on the sequences. It is not an in-depth approach on the properties of each
generator, but it is adequate to evaluate the overall performance of RNGs. It is
important to understand that what may apply for one sequence does not always
apply for all sequences. [23]

Many empirical statistical tests have been developed in an attempt to determine
whether or not there are any short-time or long-time correlations between the
numbers or their distribution. These tests are not enough. The ultimate test requires
to be run on many generators and if the results agree within a certain error margin,
the results are only likely to be correct. [24]

As was already mentioned in the previous chapter, cryptography does not require
random number generators to be information-theory secure, but computationally
secure.

Computational security, just like any type of security, cannot be absolute. In the
case of cryptography, there are a lot of links in a chain: the application, end-to-end

Development and Testing of a Hardware Random Number Generator

33

encryption (the algorithm and the randomness generated for it) in Alice and Bob
respectively and what happens during transmission, e.g. server communication),
hard drive encryption and so forth.

The basic requirement for session keys, passwords and nonces throughout this
chain is unpredictability.

Unfortunately, you cannot measure it. As was already established in the previous
section, there is an expected distribution and the distribution of the generated
values is being compared to it. There is only a certain margin that can be reached
for random numbers to be unacceptable and it is very small.

The goodness-of-fit test provided by National Institute of Standards and
Technology of the U.S. Department of Commerce (NIST) consists of 15 individual
tests and operates under the tentative presumption of randomness.

Each statistical test is written to test a null hypothesis (H0), that the sequence being
tested is random. Derived from this hypothesis is the alternative hypothesis (Ha),
that the sequence is not random. For each test, the null hypothesis is either rejected
(and the alternative hypothesis is accepted) or accepted. In order to either accept or
reject the hypothesis, a test statistic needs to be calculated and then compared to
the critical value, which was already discussed in the chapter 2.1. In the NIST suite,
the critical value is chosen to be 0.01. If the test statistic value is smaller than the
critical value, the null hypothesis is rejected. Otherwise the null hypothesis is
accepted.

In truth, the reason why the statistical testing works is that if the randomness
assumption is true for the data, then the test statistic value on the data will have a
very low probability of being lower than the critical value. If it, in fact is, then there is
a low probability that this event would occur naturally. So if it happens, the original
hypothesis is immediately rejected. [8]

So how does the suite evaluate how random a generator is? The truth is, it does no
such thing. The statistical suite makes a binary decision: “random” or “non-random”
and then generates a p-value for each separate test. This p-value means how
probable it is that the generated sequence is perfectly random. And having a higher
p-value for a tested sequence from one generator than a tested sequence from
another does not immediately mean that the first generator is better than the latter.
If the p-value for most of the tests is over 0.5, then the sequence is good and can
be used for encryption. [15]

But even if the NIST suite’s results for a sequence are unfavorable, it is not a reason
to completely abandon a random number generator. In order to achieve higher p-
values, the statistical properties of the output can be improved through different
means:

Development and Testing of a Hardware Random Number Generator

34

Encryption: by adding a layer of encryption randomness can be added to a weak
random sequence

De-skewing. Suppose the sequence is not perfectly uniform, however, it is known
how much it diverges from it, then the sequence’s uniformity can be improved. One
of the de-skewing techniques, developed by von Neumann, uses Transition
Mappings. It examines a bitstream as a sequence of non-overlapping consecutive
pairs. First, one discards any same-bit pairs, then, one interprets 01 as 0 and 10 as
1. That eliminates bias but requires a number of input bits that is indeterminable if
the desired number of output bits is known. Another method of de-skewing is the
Fourier transform of data. FFT discards strong correlations. [2]

Mixing: employing a good mixing function can be helpful to distort the output of an
unreliable random number generator. The principle of mixing is employed in
pseudorandom number generators. For example, the AES algorithm is an extremely
reliable, well-documented and thoroughly tested method that has the advantage of
being non-invertible. [2]

Development and Testing of a Hardware Random Number Generator

35

3.2. Requirements per purpose

• Uses outside of cryptography (gambling, simulations, Monte Carlo)

• Uses in cryptography

True random number generators are by definition unpredictable and
pseudorandom variants would produce the same sequence if they use the very
same seed, which leads to the conclusion that we do not necessarily need the latter.
It is a false conclusion.

In fact, pseudorandom numbers often appear to be more random than random
numbers obtained from physical sources. It happens because if a pseudorandom
sequence is properly constructed, each value in the sequence is used in
transformations to produce seemingly additional randomness in the following value.
A series of these transformations can dispel statistical auto-correlations between
input and output. Because of that, the outputs of PRNGs sometimes have better
statistical properties, not to mention produce sequences faster than an RNG. [8]

Plus, for simulations and Monte Carlo purposes, the pseudorandom generators
have one serious perk: repeatability. Namely, the fact that if the seed remains the
same, they generate the same sequence of randomness. It serves a significant
purpose in recreating an experiment.

Gambling does not benefit from speed and repeatability, in fact, most slot
machines are built with longer sequences to build suspense. A perfect gambling
system would need to have the structure of a black box, impenetrable to an
attacker. So a guard from interference is key.

Cryptography demands speed because users rely on almost instant communication
and an impenetrable system is a prerequisite. A reliable random number generator
is very important because the secret key used in encryption and handshake
protocols needs to be not guessable.

For speed, cryptography relies on pseudorandom number generators, but in order
to be useful, they need to be cryptographically secure.

Firstly, the requirement for a PRNG to be secure is pseudo randomness. You may
think that since this word is in the title, this requirement is trivial, but it is not. It
merely means that the output of a deterministic generator needs to be
indistinguishable from that of a true random number generator. That is not to say it
needs to be exactly the same. But it needs to be impossible to predict, just like the
output of a — by definition — unpredictable generator. The question is: how far do
you go, checking this requirement, and the answer usually presents itself as a
theoretically vague response of any information scientist — polynomial time. What it

Development and Testing of a Hardware Random Number Generator

36

means is that depending on the length of the tested sequence (n), in the worst-case
scenario the testing algorithm should have nk steps, of which k is some constant. In
computer science, problems of this complexity are considered feasible. In order to
simplify the understand, I will put it in terms of a malicious attacker.

If there is encrypted communication and the key to that communication is a
randomly generated sequence, it should be impossible for the attacker using
modern technology to guess this key, regardless of how fast their system is.

A test for pseudo randomness was developed by Andrew C. Yao and is called the
next-bit test. The principle of it is also very simple: a bit-guessing algorithm or
„distinguisher“ should not be able to guess the next bit of the sequence with a
probability higher than 50%. [25]

The last two requirements for a cryptographically secure generator are forward and
backward security. Forward security means that knowing the generator’s current
state, the attacker should not be able to elicit its past output. Backward security
signifies that knowing the current state of the generator as well, the attacker should
not be able to predict the future output. [26]

Development and Testing of a Hardware Random Number Generator

37

4. Results

4.1. Statistics over several runs and repeatability

In the testing of data using the NIST STS, I decided to start with nonrandom data, to
see how the suite would perform. I have also chosen 10 bitstreams of 512.000 bits
each, while testing an MP3 file in binary, which revealed that the data is very much
nonrandom and the tests failed systematically. It was expected. You can see in
Figure 9, the complete results for the first seven tests and only part of the results for
the eighth — Non-Overlapping Template test. The star immediately after the
proportion column indicates that the minimal pass rate of eight sequences out of
ten was not reached and the star before it indicates that the p-value for every single
bitstream is below the critical value of 0.01, as was discussed in the Chapter
„Requirements and Tests“ of the State of the Art section, it means that the data is
non-random.

Figure 9: incomplete analysis of an MP3 file

Interestingly, the only test that the sequence has passed was the Rank test, which
involves the rank of binary matrices. It can be explained by the lack of uniformity
within the sequence, whereby less patterns in linear dependence between
substrings of fixed length can be detected. This test also appeared on the DIEHARD
battery of tests and these results demonstrate that merely performing one test
could never prove randomness beyond reasonable doubt.

Development and Testing of a Hardware Random Number Generator

38

After the construction of XR232, we have discovered that the output of the device is
skewed towards zero. This anomaly could be explained by a malfunction in
digitization of the noise that comes from the Z-diode. The schematics for this
generator can be viewed in Figure 6. Figure 10 shows the generator I constructed.

Figure 10: XR232

The zero bias could stem from the voltage only barely reaching 5 volts and that still
being interpreted as a zero signal. Furthermore, the generator was incredibly slow.

These results were evaluated using the NIST STS and our fears were confirmed.
Initially, the raw results were so bad, the suite’s tests failed systematically. In an
attempt to de-skew the output of XR232, I encrypted it using GPGTools. The suite
revealed that the sequence is still unusable for cryptographic purposes, however
only barely not passing the lowest performance margin in two instances of the Non-
Overlapping Templates test. The results can be found in Table 2.

Much better results were achieved by a generator using atmospheric noise. The
generation was fast and the tests show green across the board. They can be seen in
Table 3.

The best results so far were recorded by the STS when testing the output of
dev/random. Most of the tests generated a p-value over 0.5, which is remarkably
good. First, I tested 10 bitstreams (512.000 bits each) and the proportion was nearly
perfect. The complete set of results can be seen in Table 4. I decided to perform
another round of testing, this time encompassing 100 bitstreams of the same size,
as seen in Table 5. My fears that the results were somehow skewed were not
confirmed. The excellent statistical properties of the dev/random-generated
sequences can be explained by the generator having several de-skewing and
mixing measures built in. It is safe to say that the generator is indeed
cryptographically secure and the usage of it can be encouraged.

Development and Testing of a Hardware Random Number Generator

39

The most surprising experience was testing the output of the ANU Quantum
Random Numbers Server (http://qrng.anu.edu.au/). Generating the sequence was
not fast, and I was hoping that the golden standard of randomness would trump the
results of an albeit cryptographically secure but still a pseudorandom generator.
The above mentioned webpage contains the results of continuously running NIST
STS tests. Though the p-values are high on average, they sometimes fall below the
acceptable margin, which lead me to believe that the quantum effect was not worth
the wait. Table 6 shows that only once the minimal margin was not reached. While
that does not mean that the golden standard of randomness disappointed
completely, the slowness in generation was a bitter pill to swallow.

Development and Testing of a Hardware Random Number Generator

40

4.2. Graphics and charts

Table 2: testing a XR323 sequence with a layer of encryption, length of 100 bitstreams per 512.000
bits
--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--
 generator is <data/zrandom.bin.gpg>
--
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
--
 8 6 8 8 12 8 12 16 10 12 0.534146 98/100 Frequency
 8 10 10 14 8 7 11 9 12 11 0.911413 97/100 BlockFrequency
 8 7 9 8 12 7 14 13 10 12 0.739918 98/100 CumulativeSums
 7 5 12 10 6 8 15 15 9 13 0.224821 99/100 CumulativeSums
 9 7 15 9 7 14 17 8 7 7 0.153763 100/100 Runs
 9 16 9 9 7 8 10 12 11 9 0.759756 99/100 LongestRun
 14 12 13 11 6 8 8 12 10 6 0.595549 100/100 Rank
 9 13 5 13 9 9 8 8 13 13 0.616305 97/100 FFT
 13 8 11 14 6 5 12 13 8 10 0.455937 98/100 NonOverlappingTemplate
 16 7 12 13 13 8 8 5 9 9 0.334538 98/100 NonOverlappingTemplate
 9 10 6 12 11 11 14 6 16 5 0.236810 99/100 NonOverlappingTemplate
 7 7 12 13 8 8 13 15 8 9 0.554420 99/100 NonOverlappingTemplate
 7 9 11 12 11 6 15 12 8 9 0.678686 100/100 NonOverlappingTemplate
 4 10 3 15 8 10 13 11 14 12 0.108791 100/100 NonOverlappingTemplate
 9 9 13 9 16 10 8 14 6 6 0.350485 99/100 NonOverlappingTemplate
 5 9 14 9 16 6 12 10 11 8 0.319084 100/100 NonOverlappingTemplate
 10 10 10 5 14 11 9 9 8 14 0.699313 100/100 NonOverlappingTemplate
 13 12 12 10 12 10 7 9 8 7 0.883171 100/100 NonOverlappingTemplate
 11 12 11 11 13 9 7 11 9 6 0.883171 100/100 NonOverlappingTemplate
 11 11 10 6 14 5 7 18 10 8 0.137282 99/100 NonOverlappingTemplate
 6 10 9 10 12 8 11 14 11 9 0.883171 98/100 NonOverlappingTemplate
 12 6 13 8 12 9 16 11 7 6 0.350485 98/100 NonOverlappingTemplate
 12 13 8 12 9 6 9 11 17 3 0.129620 99/100 NonOverlappingTemplate
 9 10 10 12 9 9 13 11 10 7 0.978072 97/100 NonOverlappingTemplate
 8 6 9 9 12 9 7 21 10 9 0.071177 99/100 NonOverlappingTemplate
 7 14 8 4 10 13 7 10 13 14 0.289667 99/100 NonOverlappingTemplate
 15 12 9 8 10 7 8 12 13 6 0.574903 99/100 NonOverlappingTemplate
 11 7 7 13 15 11 10 11 7 8 0.657933 100/100 NonOverlappingTemplate
 8 11 11 7 7 10 10 14 13 9 0.834308 99/100 NonOverlappingTemplate
 5 12 7 7 15 10 7 11 13 13 0.350485 99/100 NonOverlappingTemplate
 16 7 12 10 7 9 6 9 12 12 0.494392 99/100 NonOverlappingTemplate
 10 7 9 9 14 8 8 14 5 16 0.262249 100/100 NonOverlappingTemplate
 11 11 12 11 4 5 11 12 13 10 0.514124 98/100 NonOverlappingTemplate
 11 11 10 8 7 13 9 8 13 10 0.924076 97/100 NonOverlappingTemplate
 9 15 9 10 13 12 3 7 11 11 0.350485 100/100 NonOverlappingTemplate
 5 14 12 5 8 9 9 9 13 16 0.202268 99/100 NonOverlappingTemplate
 6 13 8 7 15 10 5 13 15 8 0.181557 100/100 NonOverlappingTemplate
 11 9 9 14 10 8 12 8 7 12 0.883171 98/100 NonOverlappingTemplate
 10 13 12 10 6 10 11 5 12 11 0.739918 99/100 NonOverlappingTemplate
 14 15 13 7 12 9 8 6 6 10 0.350485 98/100 NonOverlappingTemplate
 11 9 10 6 14 10 10 9 9 12 0.911413 100/100 NonOverlappingTemplate
 12 8 8 13 7 15 10 13 6 8 0.494392 99/100 NonOverlappingTemplate
 10 12 15 10 10 9 10 4 9 11 0.657933 99/100 NonOverlappingTemplate
 11 9 12 5 7 16 14 9 5 12 0.202268 100/100 NonOverlappingTemplate
 14 13 11 7 8 5 11 12 11 8 0.595549 96/100 NonOverlappingTemplate
 7 8 13 13 11 9 8 12 9 10 0.897763 99/100 NonOverlappingTemplate
 7 8 16 10 7 7 12 8 11 14 0.419021 97/100 NonOverlappingTemplate
 8 7 8 9 18 9 9 12 9 11 0.437274 99/100 NonOverlappingTemplate
 12 12 12 11 7 14 8 12 5 7 0.534146 100/100 NonOverlappingTemplate
 11 8 6 15 12 9 9 6 11 13 0.554420 99/100 NonOverlappingTemplate
 11 9 17 9 10 7 5 9 11 12 0.419021 100/100 NonOverlappingTemplate
 8 9 16 12 8 10 10 10 9 8 0.798139 100/100 NonOverlappingTemplate
 9 6 10 11 5 8 11 9 12 19 0.145326 100/100 NonOverlappingTemplate
 9 8 15 8 4 14 7 10 17 8 0.096578 99/100 NonOverlappingTemplate
 15 9 9 16 14 7 7 11 5 7 0.153763 99/100 NonOverlappingTemplate
 11 10 7 11 7 9 9 13 11 12 0.935716 99/100 NonOverlappingTemplate
 6 8 12 14 9 11 5 12 8 15 0.350485 99/100 NonOverlappingTemplate
 10 10 7 7 10 11 13 11 11 10 0.964295 99/100 NonOverlappingTemplate
 11 11 7 9 14 9 12 9 11 7 0.883171 99/100 NonOverlappingTemplate
 8 12 6 15 10 12 7 11 12 7 0.574903 100/100 NonOverlappingTemplate
 6 9 9 13 12 14 10 10 9 8 0.816537 99/100 NonOverlappingTemplate
 15 9 8 6 14 6 8 10 15 9 0.289667 100/100 NonOverlappingTemplate
 10 7 9 13 9 12 10 6 13 11 0.834308 99/100 NonOverlappingTemplate
 6 11 13 17 12 11 9 7 8 6 0.275709 99/100 NonOverlappingTemplate
 12 7 10 14 6 14 5 9 8 15 0.236810 99/100 NonOverlappingTemplate
 6 10 10 7 15 11 13 12 7 9 0.595549 99/100 NonOverlappingTemplate
 7 13 11 13 12 11 8 5 10 10 0.719747 99/100 NonOverlappingTemplate
 8 12 6 12 11 4 12 11 11 13 0.534146 100/100 NonOverlappingTemplate
 12 5 11 7 7 16 10 6 15 11 0.181557 99/100 NonOverlappingTemplate
 10 5 13 8 13 3 17 11 10 10 0.102526 100/100 NonOverlappingTemplate
 7 13 9 11 9 12 8 8 10 13 0.897763 99/100 NonOverlappingTemplate
 9 8 9 12 12 7 12 16 7 8 0.574903 100/100 NonOverlappingTemplate
 15 13 8 6 10 8 6 12 9 13 0.455937 95/100 * NonOverlappingTemplate
 10 6 10 8 12 7 7 7 18 15 0.122325 100/100 NonOverlappingTemplate
 14 11 12 10 8 7 6 14 11 7 0.574903 99/100 NonOverlappingTemplate
 13 19 12 8 6 3 8 12 12 7 0.030806 98/100 NonOverlappingTemplate
 3 14 9 11 4 16 10 10 17 6 0.015598 99/100 NonOverlappingTemplate
 12 11 13 6 9 9 9 7 11 13 0.816537 100/100 NonOverlappingTemplate
 9 8 5 9 10 11 13 8 17 10 0.401199 98/100 NonOverlappingTemplate
 9 12 11 7 13 9 13 9 13 4 0.534146 95/100 * NonOverlappingTemplate

Development and Testing of a Hardware Random Number Generator

41

 6 12 7 8 10 10 11 10 6 20 0.090936 100/100 NonOverlappingTemplate
 7 9 10 14 10 9 13 5 14 9 0.554420 100/100 NonOverlappingTemplate
 13 8 11 14 6 5 12 13 8 10 0.455937 98/100 NonOverlappingTemplate
 8 9 5 6 13 14 9 14 13 9 0.366918 99/100 NonOverlappingTemplate
 14 5 4 17 9 4 7 16 15 9 0.005358 100/100 NonOverlappingTemplate
 8 7 13 12 11 5 13 8 13 10 0.595549 97/100 NonOverlappingTemplate
 16 7 11 12 9 10 10 5 8 12 0.494392 100/100 NonOverlappingTemplate
 9 12 9 11 10 8 12 9 8 12 0.983453 100/100 NonOverlappingTemplate
 13 5 8 12 6 14 10 10 12 10 0.554420 98/100 NonOverlappingTemplate
 3 7 8 17 12 10 7 17 7 12 0.028817 100/100 NonOverlappingTemplate
 11 8 13 8 7 13 15 9 8 8 0.637119 97/100 NonOverlappingTemplate
 13 8 10 14 10 8 10 6 8 13 0.719747 99/100 NonOverlappingTemplate
 18 12 6 9 8 6 10 11 11 9 0.289667 97/100 NonOverlappingTemplate
 10 11 8 16 10 5 9 10 13 8 0.534146 100/100 NonOverlappingTemplate
 14 10 11 13 9 9 9 12 5 8 0.719747 100/100 NonOverlappingTemplate
 11 12 7 12 13 10 5 8 12 10 0.739918 100/100 NonOverlappingTemplate
 10 4 9 11 6 14 10 15 14 7 0.213309 99/100 NonOverlappingTemplate
 10 10 11 9 10 10 5 12 15 8 0.739918 99/100 NonOverlappingTemplate
 14 16 7 9 8 9 11 9 7 10 0.554420 97/100 NonOverlappingTemplate
 10 8 13 11 12 11 8 3 16 8 0.262249 97/100 NonOverlappingTemplate
 6 10 13 12 10 11 12 6 7 13 0.657933 100/100 NonOverlappingTemplate
 12 10 11 6 9 9 11 10 7 15 0.759756 99/100 NonOverlappingTemplate
 12 11 12 13 7 15 10 5 5 10 0.334538 96/100 NonOverlappingTemplate
 12 7 8 6 7 11 19 10 7 13 0.115387 98/100 NonOverlappingTemplate
 9 15 8 10 7 8 11 10 12 10 0.851383 100/100 NonOverlappingTemplate
 10 9 11 11 9 9 7 11 9 14 0.955835 99/100 NonOverlappingTemplate
 7 10 13 11 8 11 9 12 11 8 0.946308 100/100 NonOverlappingTemplate
 8 10 15 12 9 11 9 3 16 7 0.162606 100/100 NonOverlappingTemplate
 7 13 13 15 7 13 6 8 11 7 0.350485 99/100 NonOverlappingTemplate
 8 14 8 4 14 9 12 13 4 14 0.115387 99/100 NonOverlappingTemplate
 7 16 9 8 9 11 11 11 7 11 0.699313 99/100 NonOverlappingTemplate
 14 10 9 10 5 5 14 5 15 13 0.115387 99/100 NonOverlappingTemplate
 6 5 8 11 12 11 14 12 10 11 0.616305 99/100 NonOverlappingTemplate
 10 14 13 9 13 8 8 9 5 11 0.637119 99/100 NonOverlappingTemplate
 17 5 15 11 11 16 9 7 4 5 0.013569 100/100 NonOverlappingTemplate
 15 13 6 9 10 10 7 11 8 11 0.678686 99/100 NonOverlappingTemplate
 10 9 9 8 10 8 11 9 11 15 0.924076 99/100 NonOverlappingTemplate
 18 10 12 7 14 13 6 9 3 8 0.045675 100/100 NonOverlappingTemplate
 5 10 9 15 10 7 10 9 13 12 0.595549 99/100 NonOverlappingTemplate
 9 13 8 13 11 5 8 14 10 9 0.637119 99/100 NonOverlappingTemplate
 8 10 7 20 13 6 11 6 13 6 0.035174 97/100 NonOverlappingTemplate
 9 13 6 7 8 12 9 5 19 12 0.080519 96/100 NonOverlappingTemplate
 16 8 8 10 9 10 9 12 7 11 0.739918 98/100 NonOverlappingTemplate
 10 8 9 7 13 13 17 10 5 8 0.275709 99/100 NonOverlappingTemplate
 10 8 8 12 13 5 16 8 8 12 0.401199 100/100 NonOverlappingTemplate
 9 10 9 14 6 9 9 11 12 11 0.897763 99/100 NonOverlappingTemplate
 8 10 9 9 9 13 15 7 7 13 0.657933 98/100 NonOverlappingTemplate
 11 11 13 8 11 6 8 9 13 10 0.867692 99/100 NonOverlappingTemplate
 10 14 8 12 9 9 8 8 11 11 0.935716 99/100 NonOverlappingTemplate
 10 14 11 12 4 11 7 15 10 6 0.289667 98/100 NonOverlappingTemplate
 5 9 8 9 13 10 15 10 8 13 0.554420 100/100 NonOverlappingTemplate
 6 15 7 11 12 14 9 9 9 8 0.554420 100/100 NonOverlappingTemplate
 16 9 9 14 5 9 9 8 8 13 0.366918 100/100 NonOverlappingTemplate
 10 8 18 10 11 8 10 6 8 11 0.401199 99/100 NonOverlappingTemplate
 11 10 5 18 11 11 6 9 11 8 0.249284 98/100 NonOverlappingTemplate
 8 10 6 16 7 8 13 14 9 9 0.383827 98/100 NonOverlappingTemplate
 6 12 10 7 10 10 12 13 3 17 0.122325 98/100 NonOverlappingTemplate
 6 15 9 10 9 8 18 6 11 8 0.153763 100/100 NonOverlappingTemplate
 12 10 15 14 7 7 10 6 8 11 0.494392 100/100 NonOverlappingTemplate
 11 9 11 10 10 12 8 10 10 9 0.998821 100/100 NonOverlappingTemplate
 10 14 8 7 8 9 11 7 11 15 0.637119 99/100 NonOverlappingTemplate
 12 11 11 8 6 10 9 12 12 9 0.935716 98/100 NonOverlappingTemplate
 6 8 8 12 5 5 13 16 9 18 0.026948 100/100 NonOverlappingTemplate
 10 12 9 13 5 11 11 12 10 7 0.798139 98/100 NonOverlappingTemplate
 10 10 12 11 12 10 10 9 3 13 0.657933 100/100 NonOverlappingTemplate
 9 8 11 11 12 8 8 12 11 10 0.983453 100/100 NonOverlappingTemplate
 7 10 7 16 10 13 6 12 7 12 0.383827 100/100 NonOverlappingTemplate
 11 11 9 9 13 4 9 14 12 8 0.595549 98/100 NonOverlappingTemplate
 8 10 6 10 8 12 15 9 13 9 0.699313 98/100 NonOverlappingTemplate
 9 5 11 12 17 4 9 8 14 11 0.129620 100/100 NonOverlappingTemplate
 10 12 11 11 13 9 11 10 8 5 0.867692 99/100 NonOverlappingTemplate
 3 7 18 16 4 9 9 11 13 10 0.014550 100/100 NonOverlappingTemplate
 9 7 12 5 12 15 13 6 7 14 0.224821 98/100 NonOverlappingTemplate
 9 17 7 9 11 9 13 9 12 4 0.262249 97/100 NonOverlappingTemplate
 5 5 15 10 7 14 7 15 6 16 0.028817 99/100 NonOverlappingTemplate
 6 10 10 14 10 9 13 5 14 9 0.494392 100/100 NonOverlappingTemplate
 13 9 10 7 12 9 8 9 12 11 0.946308 98/100 OverlappingTemplate
 11 10 8 11 10 17 6 11 11 5 0.366918 100/100 Universal
 13 10 13 7 5 16 6 14 8 8 0.171867 97/100 ApproximateEntropy
 6 4 2 3 6 6 4 2 3 6 0.689019 39/42 RandomExcursions
 7 5 1 7 2 4 1 6 3 6 0.186566 41/42 RandomExcursions
 7 5 7 3 6 1 6 6 0 1 0.057146 40/42 RandomExcursions
 6 3 3 5 6 1 3 8 5 2 0.311542 41/42 RandomExcursions
 9 2 2 4 5 7 2 2 5 4 0.162606 40/42 RandomExcursions
 4 5 4 5 6 1 7 6 2 2 0.437274 42/42 RandomExcursions
 2 4 3 5 5 6 4 3 6 4 0.911413 42/42 RandomExcursions
 5 5 4 5 3 6 2 4 6 2 0.834308 41/42 RandomExcursions
 3 4 6 8 6 2 5 1 4 3 0.350485 42/42 RandomExcursionsVariant
 4 6 7 9 3 1 1 3 2 6 0.057146 42/42 RandomExcursionsVariant
 4 9 6 4 2 7 1 3 2 4 0.122325 42/42 RandomExcursionsVariant
 4 8 5 5 1 8 2 3 2 4 0.162606 42/42 RandomExcursionsVariant
 4 8 4 3 5 3 2 6 4 3 0.637119 42/42 RandomExcursionsVariant
 6 7 5 4 2 2 5 4 5 2 0.637119 42/42 RandomExcursionsVariant
 7 5 6 4 3 4 3 1 3 6 0.585209 42/42 RandomExcursionsVariant
 5 3 6 3 8 4 3 3 6 1 0.392456 42/42 RandomExcursionsVariant
 2 3 3 10 4 5 2 5 5 3 0.186566 42/42 RandomExcursionsVariant
 6 2 2 2 4 4 5 5 5 7 0.637119 42/42 RandomExcursionsVariant

Development and Testing of a Hardware Random Number Generator

42

 4 8 4 0 4 8 2 6 3 3 0.105618 41/42 RandomExcursionsVariant
 7 3 4 7 3 1 2 8 5 2 0.141256 42/42 RandomExcursionsVariant
 2 8 3 6 6 3 2 2 7 3 0.213309 42/42 RandomExcursionsVariant
 3 6 3 3 6 7 8 2 0 4 0.122325 42/42 RandomExcursionsVariant
 3 5 5 6 3 3 4 5 4 4 0.980883 42/42 RandomExcursionsVariant
 3 6 5 6 1 7 5 4 3 2 0.484646 42/42 RandomExcursionsVariant
 3 8 1 5 5 7 2 5 2 4 0.242986 42/42 RandomExcursionsVariant
 3 7 4 4 0 5 2 7 6 4 0.275709 42/42 RandomExcursionsVariant
 7 11 12 10 7 12 10 8 10 13 0.911413 99/100 Serial
 8 9 9 8 10 8 9 12 17 10 0.657933 99/100 Serial
 4 13 8 11 11 12 10 7 13 11 0.595549 99/100 LinearComplexity

-
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 39 for a sample size = 42 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
-

Table 3: testing a sequence of 100 bitstreams per 512.000 bits generated by a radio frequency
dongle and converted into bits by rtl_entropy
--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--
 generator is <data/radioentropy.bin>
--
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
--
 9 17 9 14 8 11 6 10 13 3 0.102526 100/100 Frequency
 9 6 14 14 8 12 12 6 8 11 0.514124 98/100 BlockFrequency
 13 12 14 10 7 6 10 10 13 5 0.455937 100/100 CumulativeSums
 14 10 10 10 9 11 13 6 9 8 0.851383 100/100 CumulativeSums
 8 5 14 6 10 8 9 11 13 16 0.262249 99/100 Runs
 6 12 8 12 13 9 15 8 10 7 0.574903 99/100 LongestRun
 10 10 14 10 12 11 8 8 9 8 0.946308 100/100 Rank
 9 8 10 9 8 9 10 11 12 14 0.955835 99/100 FFT
 8 13 6 13 11 15 10 9 8 7 0.554420 99/100 NonOverlappingTemplate
 15 9 10 9 5 13 7 15 5 12 0.191687 99/100 NonOverlappingTemplate
 11 5 18 4 8 6 13 14 6 15 0.011791 99/100 NonOverlappingTemplate
 14 8 7 14 11 10 9 10 11 6 0.699313 99/100 NonOverlappingTemplate
 8 7 9 11 9 11 8 16 9 12 0.719747 99/100 NonOverlappingTemplate
 11 9 11 5 9 11 8 11 16 9 0.616305 100/100 NonOverlappingTemplate
 8 10 7 13 9 11 11 7 12 12 0.897763 99/100 NonOverlappingTemplate
 13 6 11 8 10 11 16 11 5 9 0.401199 100/100 NonOverlappingTemplate
 7 10 12 9 10 8 12 11 12 9 0.971699 99/100 NonOverlappingTemplate
 11 10 12 8 9 17 7 5 9 12 0.366918 99/100 NonOverlappingTemplate
 9 13 13 7 7 9 13 10 9 10 0.851383 100/100 NonOverlappingTemplate
 13 13 4 10 7 14 12 13 5 9 0.224821 97/100 NonOverlappingTemplate
 17 7 6 9 12 8 10 9 8 14 0.319084 97/100 NonOverlappingTemplate
 16 2 6 9 11 12 7 16 14 7 0.023545 100/100 NonOverlappingTemplate
 6 13 10 13 14 10 7 6 11 10 0.574903 100/100 NonOverlappingTemplate
 14 7 7 11 16 11 10 10 5 9 0.366918 98/100 NonOverlappingTemplate
 7 8 15 12 10 13 9 10 9 7 0.719747 99/100 NonOverlappingTemplate
 11 14 6 10 11 11 16 2 9 10 0.137282 98/100 NonOverlappingTemplate
 10 12 10 12 15 8 8 10 7 8 0.798139 100/100 NonOverlappingTemplate
 9 11 10 7 13 9 7 9 15 10 0.779188 99/100 NonOverlappingTemplate
 13 9 12 11 6 10 13 9 4 13 0.474986 100/100 NonOverlappingTemplate
 8 12 16 7 9 9 8 8 16 7 0.289667 98/100 NonOverlappingTemplate
 10 7 10 9 13 9 11 9 6 16 0.595549 100/100 NonOverlappingTemplate
 14 13 12 11 8 1 11 9 7 14 0.115387 100/100 NonOverlappingTemplate
 7 11 7 14 6 8 15 10 16 6 0.153763 98/100 NonOverlappingTemplate
 10 6 4 12 11 12 11 9 14 11 0.534146 100/100 NonOverlappingTemplate
 7 5 6 14 10 4 16 12 12 14 0.062821 100/100 NonOverlappingTemplate
 8 10 11 7 11 19 8 11 7 8 0.249284 99/100 NonOverlappingTemplate
 6 14 9 10 10 9 6 12 12 12 0.719747 100/100 NonOverlappingTemplate
 10 4 16 12 9 15 9 11 6 8 0.191687 98/100 NonOverlappingTemplate
 10 6 9 12 11 10 13 12 8 9 0.911413 97/100 NonOverlappingTemplate
 3 17 9 12 13 11 7 11 7 10 0.153763 100/100 NonOverlappingTemplate
 13 11 10 11 10 12 10 7 9 7 0.946308 97/100 NonOverlappingTemplate
 8 12 6 9 11 13 8 12 9 12 0.851383 99/100 NonOverlappingTemplate
 7 14 14 11 10 12 6 8 6 12 0.474986 100/100 NonOverlappingTemplate
 7 9 7 10 15 13 5 8 15 11 0.289667 99/100 NonOverlappingTemplate
 10 13 6 4 9 13 12 9 13 11 0.474986 100/100 NonOverlappingTemplate
 6 19 11 5 13 6 9 9 13 9 0.066882 98/100 NonOverlappingTemplate
 14 12 17 6 8 12 8 9 10 4 0.145326 99/100 NonOverlappingTemplate
 5 11 8 14 8 6 8 16 11 13 0.236810 100/100 NonOverlappingTemplate
 10 14 15 11 11 10 3 8 10 8 0.350485 99/100 NonOverlappingTemplate
 10 13 12 8 13 9 11 7 8 9 0.897763 99/100 NonOverlappingTemplate
 6 8 11 7 13 11 6 12 17 9 0.275709 99/100 NonOverlappingTemplate
 9 13 8 11 10 12 7 9 11 10 0.964295 100/100 NonOverlappingTemplate
 9 10 9 8 11 12 14 11 9 7 0.924076 98/100 NonOverlappingTemplate
 10 4 10 7 12 11 12 13 8 13 0.574903 100/100 NonOverlappingTemplate
 4 10 13 5 13 8 11 9 16 11 0.202268 99/100 NonOverlappingTemplate
 14 10 13 10 5 14 7 3 10 14 0.122325 100/100 NonOverlappingTemplate
 12 9 14 6 11 11 11 9 9 8 0.867692 100/100 NonOverlappingTemplate
 10 11 15 8 16 9 6 5 11 9 0.275709 98/100 NonOverlappingTemplate
 8 8 14 12 13 5 7 9 8 16 0.262249 98/100 NonOverlappingTemplate
 13 8 8 1 11 14 9 12 14 10 0.137282 100/100 NonOverlappingTemplate

Development and Testing of a Hardware Random Number Generator

43

 11 10 12 9 11 11 8 12 6 10 0.955835 99/100 NonOverlappingTemplate
 8 11 10 11 5 9 8 11 16 11 0.595549 99/100 NonOverlappingTemplate
 9 12 8 8 10 7 12 11 12 11 0.955835 98/100 NonOverlappingTemplate
 9 13 11 6 6 15 9 11 9 11 0.616305 97/100 NonOverlappingTemplate
 11 11 16 5 11 9 9 6 11 11 0.494392 99/100 NonOverlappingTemplate
 6 11 12 8 10 10 11 7 12 13 0.851383 100/100 NonOverlappingTemplate
 7 9 13 15 8 8 13 10 8 9 0.678686 99/100 NonOverlappingTemplate
 7 8 10 14 11 11 11 8 7 13 0.798139 100/100 NonOverlappingTemplate
 10 11 13 14 10 9 7 10 7 9 0.867692 98/100 NonOverlappingTemplate
 10 9 7 12 10 3 12 7 12 18 0.108791 99/100 NonOverlappingTemplate
 15 14 5 11 8 7 9 9 13 9 0.419021 99/100 NonOverlappingTemplate
 6 12 8 10 13 8 15 10 7 11 0.616305 100/100 NonOverlappingTemplate
 11 10 12 12 9 12 12 6 5 11 0.739918 100/100 NonOverlappingTemplate
 11 7 13 7 9 9 9 11 16 8 0.616305 98/100 NonOverlappingTemplate
 15 9 9 12 9 7 7 8 9 15 0.534146 99/100 NonOverlappingTemplate
 7 9 14 7 17 4 12 10 13 7 0.115387 100/100 NonOverlappingTemplate
 10 8 9 5 15 12 11 10 12 8 0.657933 99/100 NonOverlappingTemplate
 9 15 11 8 9 9 9 9 10 11 0.935716 98/100 NonOverlappingTemplate
 16 8 8 11 8 7 15 11 8 8 0.419021 99/100 NonOverlappingTemplate
 12 15 8 4 11 10 6 11 13 10 0.383827 100/100 NonOverlappingTemplate
 8 11 7 8 16 12 13 9 10 6 0.494392 100/100 NonOverlappingTemplate
 10 11 8 13 13 10 9 11 9 6 0.897763 100/100 NonOverlappingTemplate
 8 13 6 13 11 15 10 9 8 7 0.554420 99/100 NonOverlappingTemplate
 10 14 10 6 13 15 5 11 5 11 0.224821 100/100 NonOverlappingTemplate
 7 11 11 14 10 5 10 13 10 9 0.719747 98/100 NonOverlappingTemplate
 11 8 9 6 8 8 13 7 13 17 0.304126 98/100 NonOverlappingTemplate
 7 14 11 12 19 7 7 5 11 7 0.058984 97/100 NonOverlappingTemplate
 8 9 11 10 12 9 11 11 11 8 0.994250 100/100 NonOverlappingTemplate
 12 12 2 13 10 8 12 11 12 8 0.366918 99/100 NonOverlappingTemplate
 10 12 9 9 8 12 4 14 9 13 0.574903 97/100 NonOverlappingTemplate
 16 12 11 6 8 9 11 10 8 9 0.657933 100/100 NonOverlappingTemplate
 16 14 7 7 12 9 7 11 5 12 0.249284 99/100 NonOverlappingTemplate
 12 10 10 10 8 11 8 12 11 8 0.987896 98/100 NonOverlappingTemplate
 17 3 12 13 10 10 9 10 9 7 0.202268 98/100 NonOverlappingTemplate
 16 11 10 7 10 9 6 6 12 13 0.419021 97/100 NonOverlappingTemplate
 9 9 7 9 15 8 10 11 15 7 0.574903 100/100 NonOverlappingTemplate
 6 10 12 17 14 5 8 11 10 7 0.191687 100/100 NonOverlappingTemplate
 10 11 12 9 11 10 10 8 11 8 0.996335 100/100 NonOverlappingTemplate
 15 15 16 10 6 8 6 12 5 7 0.066882 99/100 NonOverlappingTemplate
 17 16 9 11 8 12 11 5 6 5 0.062821 98/100 NonOverlappingTemplate
 11 12 6 12 3 6 11 10 11 18 0.075719 98/100 NonOverlappingTemplate
 12 11 11 15 6 12 10 9 7 7 0.637119 98/100 NonOverlappingTemplate
 6 16 9 6 15 10 15 5 12 6 0.058984 100/100 NonOverlappingTemplate
 14 14 10 11 6 8 9 12 7 9 0.657933 99/100 NonOverlappingTemplate
 9 11 8 10 9 15 7 8 13 10 0.798139 99/100 NonOverlappingTemplate
 11 10 12 7 6 8 15 9 15 7 0.401199 99/100 NonOverlappingTemplate
 10 18 12 10 6 8 8 6 10 12 0.262249 100/100 NonOverlappingTemplate
 10 10 12 11 13 9 9 7 10 9 0.978072 99/100 NonOverlappingTemplate
 9 6 13 11 15 9 6 7 7 17 0.137282 100/100 NonOverlappingTemplate
 7 13 7 13 8 11 11 6 6 18 0.129620 99/100 NonOverlappingTemplate
 11 13 12 8 12 7 14 5 14 4 0.191687 100/100 NonOverlappingTemplate
 7 11 15 7 6 14 10 11 12 7 0.437274 100/100 NonOverlappingTemplate
 14 11 12 7 9 14 10 3 12 8 0.319084 99/100 NonOverlappingTemplate
 7 15 6 18 12 7 10 6 11 8 0.096578 100/100 NonOverlappingTemplate
 10 11 5 13 11 13 12 7 7 11 0.657933 98/100 NonOverlappingTemplate
 6 11 9 11 12 8 10 13 11 9 0.924076 100/100 NonOverlappingTemplate
 12 6 14 11 11 12 9 9 6 10 0.739918 96/100 NonOverlappingTemplate
 8 11 8 9 12 8 13 7 7 17 0.401199 98/100 NonOverlappingTemplate
 8 12 10 8 6 9 13 13 9 12 0.816537 100/100 NonOverlappingTemplate
 10 7 4 11 11 11 12 13 6 15 0.334538 98/100 NonOverlappingTemplate
 7 11 11 9 10 15 12 8 10 7 0.798139 99/100 NonOverlappingTemplate
 3 10 14 6 10 10 11 7 16 13 0.137282 98/100 NonOverlappingTemplate
 11 9 8 11 16 8 7 11 7 12 0.637119 99/100 NonOverlappingTemplate
 7 9 7 12 11 12 13 11 7 11 0.851383 100/100 NonOverlappingTemplate
 11 15 8 6 6 11 15 10 8 10 0.419021 97/100 NonOverlappingTemplate
 10 12 10 10 11 7 7 9 11 13 0.946308 98/100 NonOverlappingTemplate
 14 4 9 5 11 13 11 9 9 15 0.236810 99/100 NonOverlappingTemplate
 10 11 11 11 8 12 10 9 10 8 0.996335 100/100 NonOverlappingTemplate
 12 14 7 7 11 10 11 12 9 7 0.798139 99/100 NonOverlappingTemplate
 10 11 8 13 6 16 10 7 8 11 0.534146 100/100 NonOverlappingTemplate
 5 5 9 11 11 13 17 8 12 9 0.213309 100/100 NonOverlappingTemplate
 11 12 6 7 9 7 14 12 12 10 0.699313 98/100 NonOverlappingTemplate
 12 11 12 7 15 11 8 12 7 5 0.474986 100/100 NonOverlappingTemplate
 5 10 9 14 7 10 5 10 19 11 0.071177 100/100 NonOverlappingTemplate
 7 13 11 11 9 13 5 11 13 7 0.595549 100/100 NonOverlappingTemplate
 8 5 6 10 13 10 15 13 9 11 0.437274 100/100 NonOverlappingTemplate
 11 9 8 9 10 11 8 16 5 13 0.514124 98/100 NonOverlappingTemplate
 6 10 9 12 9 10 6 15 13 10 0.616305 100/100 NonOverlappingTemplate
 12 8 8 12 3 14 9 8 10 16 0.202268 100/100 NonOverlappingTemplate
 6 15 7 11 13 10 11 8 11 8 0.637119 99/100 NonOverlappingTemplate
 10 6 9 12 11 11 6 15 11 9 0.678686 100/100 NonOverlappingTemplate
 12 14 8 8 10 12 7 8 11 10 0.867692 99/100 NonOverlappingTemplate
 14 4 7 6 13 12 9 10 10 15 0.236810 100/100 NonOverlappingTemplate
 12 9 12 13 13 10 9 11 4 7 0.595549 99/100 NonOverlappingTemplate
 13 7 7 4 14 10 12 15 5 13 0.115387 97/100 NonOverlappingTemplate
 7 9 16 6 14 11 7 12 11 7 0.334538 100/100 NonOverlappingTemplate
 10 7 11 9 10 11 11 5 11 15 0.699313 100/100 NonOverlappingTemplate
 8 10 8 6 6 12 6 18 15 11 0.090936 100/100 NonOverlappingTemplate
 12 6 9 16 9 10 15 7 9 7 0.334538 100/100 NonOverlappingTemplate
 9 9 14 6 8 9 16 7 13 9 0.401199 99/100 NonOverlappingTemplate
 9 11 11 11 14 10 8 8 8 10 0.955835 100/100 NonOverlappingTemplate
 6 11 6 10 16 5 12 7 13 14 0.153763 98/100 NonOverlappingTemplate
 12 14 9 15 10 6 9 10 6 9 0.534146 99/100 NonOverlappingTemplate
 11 10 5 11 12 7 12 5 15 12 0.366918 99/100 NonOverlappingTemplate
 6 14 11 8 9 10 15 6 9 12 0.494392 100/100 NonOverlappingTemplate
 10 11 8 13 13 10 9 11 9 6 0.897763 100/100 NonOverlappingTemplate
 9 9 11 12 13 11 8 12 6 9 0.897763 100/100 OverlappingTemplate

Development and Testing of a Hardware Random Number Generator

44

 11 7 2 14 15 11 13 10 8 9 0.162606 100/100 Universal
 12 10 9 8 12 9 7 16 7 10 0.657933 99/100 ApproximateEntropy
 4 2 7 1 3 9 3 7 6 3 0.072289 45/45 RandomExcursions
 11 4 6 3 4 3 5 2 4 3 0.084294 44/45 RandomExcursions
 7 4 7 3 2 7 4 1 6 4 0.258961 44/45 RandomExcursions
 5 3 3 3 4 4 9 4 5 5 0.559523 44/45 RandomExcursions
 8 6 2 8 3 3 6 4 3 2 0.174249 44/45 RandomExcursions
 5 2 4 4 2 7 3 7 5 6 0.509162 45/45 RandomExcursions
 4 4 5 3 5 8 4 6 2 4 0.663130 45/45 RandomExcursions
 4 2 6 5 8 3 3 6 3 5 0.509162 44/45 RandomExcursions
 5 4 5 7 6 5 7 2 1 3 0.371101 45/45 RandomExcursionsVariant
 4 5 3 7 10 4 3 2 4 3 0.151616 45/45 RandomExcursionsVariant
 4 5 8 8 5 1 1 4 4 5 0.151616 45/45 RandomExcursionsVariant
 2 6 12 5 2 4 3 4 1 6 0.006783 45/45 RandomExcursionsVariant
 1 6 9 6 3 4 4 3 1 8 0.044942 45/45 RandomExcursionsVariant
 2 6 7 4 2 5 7 5 3 4 0.509162 45/45 RandomExcursionsVariant
 1 5 3 5 5 8 2 9 4 3 0.098036 45/45 RandomExcursionsVariant
 1 4 5 4 5 5 4 10 3 4 0.199580 45/45 RandomExcursionsVariant
 3 5 1 7 2 3 8 6 6 4 0.199580 45/45 RandomExcursionsVariant
 7 5 4 3 7 4 3 4 2 6 0.611108 44/45 RandomExcursionsVariant
 3 6 6 4 5 7 5 3 5 1 0.559523 44/45 RandomExcursionsVariant
 1 5 3 7 4 4 5 3 5 8 0.371101 45/45 RandomExcursionsVariant
 3 5 2 3 4 4 6 7 5 6 0.714660 45/45 RandomExcursionsVariant
 6 4 3 1 5 6 4 6 7 3 0.509162 45/45 RandomExcursionsVariant
 7 3 6 4 3 6 3 3 3 7 0.559523 45/45 RandomExcursionsVariant
 8 5 3 5 4 3 3 6 3 5 0.663130 45/45 RandomExcursionsVariant
 8 4 5 3 5 3 4 3 5 5 0.764655 45/45 RandomExcursionsVariant
 9 4 4 3 4 4 4 5 3 5 0.611108 44/45 RandomExcursionsVariant
 10 6 10 13 9 13 8 10 8 13 0.816537 99/100 Serial
 8 10 8 10 7 13 13 6 12 13 0.699313 100/100 Serial
 9 13 16 7 10 3 12 13 11 6 0.145326 100/100 LinearComplexity

-
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 42 for a sample size = 45 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
-

Table 4: first time testing of dev/random
--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--
 generator is <data/random.bin>
--
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
--
 2 1 1 1 0 1 3 1 0 0 0.534146 9/10 Frequency
 1 0 0 1 1 1 2 4 0 0 0.122325 10/10 BlockFrequency
 2 1 0 1 1 1 0 1 2 1 0.911413 9/10 CumulativeSums
 2 1 0 1 2 0 0 2 1 1 0.739918 9/10 CumulativeSums
 1 1 1 2 0 2 0 1 1 1 0.911413 10/10 Runs
 0 2 0 2 0 3 1 0 1 1 0.350485 10/10 LongestRun
 0 0 2 1 0 2 1 0 3 1 0.350485 10/10 Rank
 1 2 0 0 2 1 1 1 2 0 0.739918 10/10 FFT
 1 2 1 2 0 0 2 1 0 1 0.739918 10/10 NonOverlappingTemplate
 0 0 0 1 0 1 3 3 0 2 0.122325 10/10 NonOverlappingTemplate
 1 0 1 0 0 1 3 2 2 0 0.350485 10/10 NonOverlappingTemplate
 1 2 0 0 0 1 1 0 2 3 0.350485 10/10 NonOverlappingTemplate
 0 1 0 0 3 1 1 1 3 0 0.213309 10/10 NonOverlappingTemplate
 3 0 1 0 0 2 1 2 1 0 0.350485 9/10 NonOverlappingTemplate
 2 1 1 0 1 1 1 1 1 1 0.991468 10/10 NonOverlappingTemplate
 1 0 0 0 2 0 3 3 0 1 0.122325 10/10 NonOverlappingTemplate
 1 2 0 1 0 2 0 0 1 3 0.350485 10/10 NonOverlappingTemplate
 0 3 1 0 1 1 1 0 2 1 0.534146 10/10 NonOverlappingTemplate
 4 1 0 1 0 2 1 0 0 1 0.122325 10/10 NonOverlappingTemplate
 2 1 0 1 1 2 1 2 0 0 0.739918 10/10 NonOverlappingTemplate
 1 0 2 1 1 0 1 0 2 2 0.739918 10/10 NonOverlappingTemplate
 1 0 1 2 1 2 0 1 1 1 0.911413 10/10 NonOverlappingTemplate
 2 0 0 2 0 2 0 3 1 0 0.213309 10/10 NonOverlappingTemplate
 0 0 1 0 0 2 1 2 2 2 0.534146 10/10 NonOverlappingTemplate
 1 1 3 0 1 1 2 0 0 1 0.534146 10/10 NonOverlappingTemplate
 1 2 0 2 1 1 2 0 1 0 0.739918 10/10 NonOverlappingTemplate
 2 1 0 1 2 0 1 0 0 3 0.350485 8/10 NonOverlappingTemplate
 0 0 0 1 1 1 2 0 3 2 0.350485 10/10 NonOverlappingTemplate
 2 1 2 1 1 1 0 1 1 0 0.911413 10/10 NonOverlappingTemplate
 0 1 3 1 0 0 2 0 1 2 0.350485 10/10 NonOverlappingTemplate
 1 0 0 0 0 2 1 4 0 2 0.066882 10/10 NonOverlappingTemplate
 2 1 2 0 2 0 0 1 2 0 0.534146 10/10 NonOverlappingTemplate
 0 2 3 0 0 1 1 0 1 2 0.350485 10/10 NonOverlappingTemplate
 0 2 1 1 0 1 1 0 3 1 0.534146 10/10 NonOverlappingTemplate
 0 0 1 2 2 0 0 3 1 1 0.350485 10/10 NonOverlappingTemplate
 1 2 1 1 1 1 0 2 1 0 0.911413 9/10 NonOverlappingTemplate
 3 1 1 0 1 0 2 0 1 1 0.534146 10/10 NonOverlappingTemplate
 3 0 1 1 1 0 0 1 0 3 0.213309 10/10 NonOverlappingTemplate
 2 2 0 0 0 1 1 0 1 3 0.350485 10/10 NonOverlappingTemplate
 1 2 3 0 1 2 1 0 0 0 0.350485 10/10 NonOverlappingTemplate

Development and Testing of a Hardware Random Number Generator

45

 1 0 2 2 0 0 2 1 0 2 0.534146 10/10 NonOverlappingTemplate
 4 0 0 0 1 0 0 4 0 1 0.004301 9/10 NonOverlappingTemplate
 0 1 2 2 1 0 2 1 0 1 0.739918 10/10 NonOverlappingTemplate
 1 2 1 2 0 0 1 1 2 0 0.739918 9/10 NonOverlappingTemplate
 0 0 0 2 2 0 2 1 0 3 0.213309 10/10 NonOverlappingTemplate
 0 0 2 1 2 1 2 0 1 1 0.739918 10/10 NonOverlappingTemplate
 0 1 1 2 0 1 1 3 0 1 0.534146 10/10 NonOverlappingTemplate
 3 0 1 0 3 0 1 1 0 1 0.213309 9/10 NonOverlappingTemplate
 1 1 1 0 1 3 0 2 1 0 0.534146 10/10 NonOverlappingTemplate
 0 0 2 0 3 2 0 1 1 1 0.350485 10/10 NonOverlappingTemplate
 0 0 3 1 1 0 1 1 1 2 0.534146 10/10 NonOverlappingTemplate
 0 1 1 0 0 1 4 1 2 0 0.122325 10/10 NonOverlappingTemplate
 0 0 0 2 0 0 3 1 2 2 0.213309 10/10 NonOverlappingTemplate
 1 1 0 2 2 0 1 1 1 1 0.911413 10/10 NonOverlappingTemplate
 0 0 2 1 2 2 0 1 2 0 0.534146 10/10 NonOverlappingTemplate
 1 1 2 1 1 0 0 1 1 2 0.911413 10/10 NonOverlappingTemplate
 2 3 0 2 0 0 2 0 0 1 0.213309 10/10 NonOverlappingTemplate
 0 3 1 1 1 0 1 1 1 1 0.739918 10/10 NonOverlappingTemplate
 1 0 2 0 1 1 2 0 2 1 0.739918 10/10 NonOverlappingTemplate
 0 2 1 0 0 2 1 2 1 1 0.739918 10/10 NonOverlappingTemplate
 1 3 0 0 1 1 0 0 1 3 0.213309 10/10 NonOverlappingTemplate
 2 0 1 0 1 2 0 2 1 1 0.739918 10/10 NonOverlappingTemplate
 1 0 0 0 3 1 2 1 0 2 0.350485 9/10 NonOverlappingTemplate
 2 0 0 0 1 2 3 1 0 1 0.350485 10/10 NonOverlappingTemplate
 2 1 2 1 0 0 2 1 1 0 0.739918 10/10 NonOverlappingTemplate
 3 1 0 0 2 0 1 1 0 2 0.350485 9/10 NonOverlappingTemplate
 1 1 0 0 0 4 0 0 3 1 0.035174 10/10 NonOverlappingTemplate
 1 2 0 1 0 0 2 2 2 0 0.534146 10/10 NonOverlappingTemplate
 0 1 1 1 2 1 1 0 3 0 0.534146 10/10 NonOverlappingTemplate
 1 1 1 2 1 1 0 2 0 1 0.911413 10/10 NonOverlappingTemplate
 0 0 1 2 2 0 2 1 1 1 0.739918 10/10 NonOverlappingTemplate
 0 0 1 0 0 0 2 2 3 2 0.213309 10/10 NonOverlappingTemplate
 0 2 0 2 2 2 1 1 0 0 0.534146 10/10 NonOverlappingTemplate
 1 2 2 1 1 0 0 0 3 0 0.350485 10/10 NonOverlappingTemplate
 1 0 3 0 2 2 0 1 1 0 0.350485 10/10 NonOverlappingTemplate
 0 0 0 0 1 2 3 1 1 2 0.350485 10/10 NonOverlappingTemplate
 2 0 0 1 1 2 2 1 0 1 0.739918 10/10 NonOverlappingTemplate
 3 0 0 1 0 0 1 1 2 2 0.350485 10/10 NonOverlappingTemplate
 0 0 0 1 1 1 3 2 2 0 0.350485 10/10 NonOverlappingTemplate
 1 1 2 2 0 1 0 1 2 0 0.739918 10/10 NonOverlappingTemplate
 1 0 2 0 2 0 1 2 1 1 0.739918 10/10 NonOverlappingTemplate
 0 0 2 0 1 1 2 0 2 2 0.534146 10/10 NonOverlappingTemplate
 1 2 1 2 0 0 2 1 0 1 0.739918 10/10 NonOverlappingTemplate
 2 1 0 2 0 1 1 2 1 0 0.739918 10/10 NonOverlappingTemplate
 0 2 1 0 2 1 1 1 1 1 0.911413 10/10 NonOverlappingTemplate
 1 3 1 2 0 0 2 1 0 0 0.350485 10/10 NonOverlappingTemplate
 2 1 2 1 2 0 0 2 0 0 0.534146 10/10 NonOverlappingTemplate
 0 0 1 2 0 1 1 1 2 2 0.739918 10/10 NonOverlappingTemplate
 0 0 1 1 2 2 0 3 1 0 0.350485 10/10 NonOverlappingTemplate
 2 1 2 0 2 1 0 0 1 1 0.739918 10/10 NonOverlappingTemplate
 1 2 1 2 2 0 0 1 1 0 0.739918 10/10 NonOverlappingTemplate
 0 1 1 3 1 0 2 0 2 0 0.350485 10/10 NonOverlappingTemplate
 0 2 1 0 1 0 4 0 1 1 0.122325 10/10 NonOverlappingTemplate
 3 2 0 1 0 2 1 0 1 0 0.350485 9/10 NonOverlappingTemplate
 0 2 2 1 1 0 1 0 2 1 0.739918 10/10 NonOverlappingTemplate
 0 2 2 0 2 1 0 0 1 2 0.534146 10/10 NonOverlappingTemplate
 0 1 1 2 1 1 1 2 1 0 0.911413 10/10 NonOverlappingTemplate
 0 0 2 0 1 2 2 1 0 2 0.534146 10/10 NonOverlappingTemplate
 0 1 1 2 1 1 0 1 1 2 0.911413 10/10 NonOverlappingTemplate
 2 1 2 2 1 1 0 0 1 0 0.739918 10/10 NonOverlappingTemplate
 2 3 1 1 1 0 1 0 0 1 0.534146 10/10 NonOverlappingTemplate
 1 2 1 0 0 2 1 2 1 0 0.739918 10/10 NonOverlappingTemplate
 1 1 3 1 2 0 0 0 2 0 0.350485 10/10 NonOverlappingTemplate
 2 1 1 1 0 1 0 3 0 1 0.534146 10/10 NonOverlappingTemplate
 1 2 0 1 2 1 1 0 0 2 0.739918 10/10 NonOverlappingTemplate
 0 2 0 0 1 1 1 2 2 1 0.739918 10/10 NonOverlappingTemplate
 0 1 2 0 4 1 0 0 1 1 0.122325 10/10 NonOverlappingTemplate
 1 0 1 2 2 1 2 0 0 1 0.739918 10/10 NonOverlappingTemplate
 0 1 2 2 1 2 0 1 0 1 0.739918 10/10 NonOverlappingTemplate
 1 1 1 3 1 0 0 0 1 2 0.534146 10/10 NonOverlappingTemplate
 0 0 2 1 2 2 0 1 1 1 0.739918 10/10 NonOverlappingTemplate
 1 0 1 0 0 1 2 2 2 1 0.739918 10/10 NonOverlappingTemplate
 3 3 0 0 0 2 0 1 0 1 0.122325 10/10 NonOverlappingTemplate
 2 1 0 2 1 1 1 0 2 0 0.739918 10/10 NonOverlappingTemplate
 1 2 0 0 2 2 0 3 0 0 0.213309 10/10 NonOverlappingTemplate
 2 1 0 1 2 2 0 0 2 0 0.534146 9/10 NonOverlappingTemplate
 0 1 0 1 2 1 2 0 0 3 0.350485 10/10 NonOverlappingTemplate
 0 1 1 1 2 1 2 1 1 0 0.911413 10/10 NonOverlappingTemplate
 2 0 1 1 0 0 1 2 3 0 0.350485 10/10 NonOverlappingTemplate
 1 0 0 0 1 2 1 1 3 1 0.534146 10/10 NonOverlappingTemplate
 0 1 1 1 1 1 0 0 3 2 0.534146 10/10 NonOverlappingTemplate
 1 2 0 0 1 2 0 1 2 1 0.739918 10/10 NonOverlappingTemplate
 0 0 1 1 0 2 2 2 0 2 0.534146 10/10 NonOverlappingTemplate
 2 1 1 0 1 2 0 0 1 2 0.739918 10/10 NonOverlappingTemplate
 0 1 2 2 2 0 2 0 0 1 0.534146 10/10 NonOverlappingTemplate
 1 1 1 0 0 1 3 2 0 1 0.534146 10/10 NonOverlappingTemplate
 2 2 0 0 1 1 0 1 2 1 0.739918 9/10 NonOverlappingTemplate
 2 1 1 0 2 1 1 0 0 2 0.739918 10/10 NonOverlappingTemplate
 0 1 0 2 1 3 1 0 2 0 0.350485 10/10 NonOverlappingTemplate
 0 2 0 2 1 0 1 2 1 1 0.739918 10/10 NonOverlappingTemplate
 0 2 0 3 0 1 1 0 2 1 0.350485 10/10 NonOverlappingTemplate
 0 1 0 1 1 2 1 2 1 1 0.911413 10/10 NonOverlappingTemplate
 0 0 3 0 2 0 0 2 2 1 0.213309 10/10 NonOverlappingTemplate
 2 1 0 1 1 2 1 0 0 2 0.739918 10/10 NonOverlappingTemplate
 2 0 0 2 1 1 1 1 1 1 0.911413 10/10 NonOverlappingTemplate
 1 1 0 1 3 0 0 0 3 1 0.213309 10/10 NonOverlappingTemplate
 1 0 0 2 0 2 3 1 1 0 0.350485 10/10 NonOverlappingTemplate

Development and Testing of a Hardware Random Number Generator

46

 1 0 0 3 2 1 0 1 1 1 0.534146 10/10 NonOverlappingTemplate
 1 0 0 1 1 0 2 3 1 1 0.534146 10/10 NonOverlappingTemplate
 2 0 2 0 0 1 1 1 1 2 0.739918 9/10 NonOverlappingTemplate
 0 0 3 2 0 2 1 2 0 0 0.213309 10/10 NonOverlappingTemplate
 1 0 2 1 1 2 1 2 0 0 0.739918 10/10 NonOverlappingTemplate
 0 0 0 2 1 1 2 2 0 2 0.534146 10/10 NonOverlappingTemplate
 1 2 0 1 2 1 1 1 1 0 0.911413 10/10 NonOverlappingTemplate
 2 2 1 1 0 1 1 1 1 0 0.911413 10/10 NonOverlappingTemplate
 1 0 1 0 0 4 0 2 1 1 0.122325 10/10 NonOverlappingTemplate
 1 1 0 3 0 1 2 1 0 1 0.534146 10/10 NonOverlappingTemplate
 1 0 1 1 0 2 0 0 0 5 0.008879 10/10 NonOverlappingTemplate
 2 2 0 1 0 1 2 0 1 1 0.739918 9/10 NonOverlappingTemplate
 1 1 0 1 1 1 1 0 1 3 0.739918 10/10 NonOverlappingTemplate
 1 0 2 2 1 2 0 0 1 1 0.739918 10/10 NonOverlappingTemplate
 0 1 0 2 2 0 0 3 1 1 0.350485 10/10 NonOverlappingTemplate
 1 0 3 1 0 1 0 0 2 2 0.350485 10/10 NonOverlappingTemplate
 1 2 1 0 0 1 2 0 2 1 0.739918 10/10 NonOverlappingTemplate
 0 2 1 1 1 1 3 0 0 1 0.534146 10/10 NonOverlappingTemplate
 0 0 2 0 1 1 2 0 2 2 0.534146 10/10 NonOverlappingTemplate
 2 1 2 1 1 2 0 0 1 0 0.739918 10/10 OverlappingTemplate
 1 0 2 2 0 1 1 1 1 1 0.911413 10/10 Universal
 1 1 2 1 1 1 0 2 0 1 0.911413 10/10 ApproximateEntropy
 1 0 0 1 0 0 2 0 1 0 ---- 5/5 RandomExcursions
 1 0 1 2 0 0 0 1 0 0 ---- 4/5 RandomExcursions
 2 0 0 1 0 0 1 1 0 0 ---- 5/5 RandomExcursions
 0 2 2 0 0 0 1 0 0 0 ---- 5/5 RandomExcursions
 0 1 1 0 0 0 1 1 1 0 ---- 5/5 RandomExcursions
 0 1 0 1 1 0 0 0 1 1 ---- 5/5 RandomExcursions
 0 0 1 0 2 0 0 0 0 2 ---- 5/5 RandomExcursions
 0 1 0 1 1 0 1 0 0 1 ---- 5/5 RandomExcursions
 0 0 1 0 1 0 1 0 1 1 ---- 5/5 RandomExcursionsVariant
 0 0 1 0 0 1 0 1 0 2 ---- 5/5 RandomExcursionsVariant
 0 0 1 0 0 0 1 0 3 0 ---- 5/5 RandomExcursionsVariant
 0 0 0 1 1 1 1 0 0 1 ---- 5/5 RandomExcursionsVariant
 0 0 0 1 1 2 0 1 0 0 ---- 5/5 RandomExcursionsVariant
 0 0 0 1 1 2 0 0 1 0 ---- 5/5 RandomExcursionsVariant
 1 0 0 1 0 0 2 1 0 0 ---- 5/5 RandomExcursionsVariant
 1 0 0 0 1 1 1 0 1 0 ---- 5/5 RandomExcursionsVariant
 0 2 0 1 0 1 0 0 0 1 ---- 5/5 RandomExcursionsVariant
 1 2 0 1 0 0 0 0 1 0 ---- 5/5 RandomExcursionsVariant
 0 1 1 0 0 1 0 1 0 1 ---- 5/5 RandomExcursionsVariant
 0 0 0 0 0 0 1 1 2 1 ---- 5/5 RandomExcursionsVariant
 0 0 0 0 0 1 1 0 2 1 ---- 5/5 RandomExcursionsVariant
 0 0 0 0 1 0 1 1 1 1 ---- 5/5 RandomExcursionsVariant
 0 0 1 0 0 0 2 1 1 0 ---- 5/5 RandomExcursionsVariant
 0 0 0 1 1 2 0 0 1 0 ---- 5/5 RandomExcursionsVariant
 0 0 0 1 0 3 0 1 0 0 ---- 5/5 RandomExcursionsVariant
 0 0 0 0 0 2 1 1 1 0 ---- 5/5 RandomExcursionsVariant
 1 1 1 0 2 1 1 0 1 2 0.911413 10/10 Serial
 0 1 1 2 1 1 0 1 3 0 0.534146 10/10 Serial
 0 2 2 0 3 0 0 1 1 1 0.350485 10/10 LinearComplexity

-
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 8 for a
sample size = 10 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 4 for a sample size = 5 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
-

Table 5: second time testing /dev/random
--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--
 generator is <data/devrandom2.bin>
--
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
--
 8 13 12 9 8 15 4 11 11 9 0.474986 100/100 Frequency
 8 15 10 15 12 8 9 9 7 7 0.514124 100/100 BlockFrequency
 7 10 10 16 7 13 8 9 8 12 0.574903 100/100 CumulativeSums
 9 8 14 7 9 13 12 12 5 11 0.595549 100/100 CumulativeSums
 10 14 7 10 8 8 9 6 12 16 0.437274 99/100 Runs
 10 8 9 12 11 12 7 10 12 9 0.971699 99/100 LongestRun
 8 10 12 10 14 11 9 3 12 11 0.534146 98/100 Rank
 12 11 7 10 6 11 5 9 13 16 0.334538 99/100 FFT
 13 10 14 7 12 8 12 11 9 4 0.494392 99/100 NonOverlappingTemplate
 13 12 11 7 10 6 11 10 12 8 0.851383 100/100 NonOverlappingTemplate
 9 10 10 11 9 9 11 13 9 9 0.996335 99/100 NonOverlappingTemplate
 10 8 7 9 12 14 9 14 7 10 0.739918 97/100 NonOverlappingTemplate
 9 13 9 7 11 11 11 13 14 2 0.262249 100/100 NonOverlappingTemplate
 8 9 5 7 15 11 11 13 10 11 0.574903 100/100 NonOverlappingTemplate
 10 13 11 7 8 7 8 7 17 12 0.366918 99/100 NonOverlappingTemplate
 8 8 8 10 9 7 12 8 14 16 0.514124 99/100 NonOverlappingTemplate
 6 10 8 8 15 13 9 9 12 10 0.699313 99/100 NonOverlappingTemplate
 13 10 11 10 10 11 9 8 5 13 0.834308 96/100 NonOverlappingTemplate
 6 6 11 9 16 8 11 6 15 12 0.213309 99/100 NonOverlappingTemplate

Development and Testing of a Hardware Random Number Generator

47

 7 6 7 14 14 10 10 11 10 11 0.657933 99/100 NonOverlappingTemplate
 12 6 11 14 10 11 11 10 6 9 0.779188 99/100 NonOverlappingTemplate
 10 11 5 6 9 9 12 13 11 14 0.595549 97/100 NonOverlappingTemplate
 12 13 17 7 11 10 7 6 10 7 0.304126 99/100 NonOverlappingTemplate
 7 9 13 12 4 15 8 14 5 13 0.129620 99/100 NonOverlappingTemplate
 14 8 7 6 15 8 11 7 10 14 0.350485 98/100 NonOverlappingTemplate
 19 7 8 3 15 10 9 9 12 8 0.037566 97/100 NonOverlappingTemplate
 9 12 9 7 7 13 14 11 6 12 0.637119 99/100 NonOverlappingTemplate
 16 4 9 8 12 17 5 9 11 9 0.071177 99/100 NonOverlappingTemplate
 9 8 9 8 10 9 17 8 13 9 0.595549 100/100 NonOverlappingTemplate
 9 13 10 9 12 9 9 10 12 7 0.964295 100/100 NonOverlappingTemplate
 13 14 12 13 7 11 6 10 6 8 0.494392 100/100 NonOverlappingTemplate
 11 7 7 12 12 8 9 13 11 10 0.897763 100/100 NonOverlappingTemplate
 9 13 7 10 13 8 12 12 8 8 0.851383 100/100 NonOverlappingTemplate
 7 6 11 7 13 9 9 12 9 17 0.350485 97/100 NonOverlappingTemplate
 16 15 10 10 7 13 8 10 6 5 0.191687 100/100 NonOverlappingTemplate
 14 12 9 14 15 7 11 6 5 7 0.202268 100/100 NonOverlappingTemplate
 13 6 12 15 7 12 9 13 5 8 0.304126 99/100 NonOverlappingTemplate
 8 9 14 11 7 10 19 7 5 10 0.102526 99/100 NonOverlappingTemplate
 8 11 7 11 9 15 11 5 15 8 0.383827 100/100 NonOverlappingTemplate
 8 8 16 11 7 10 9 11 9 11 0.759756 99/100 NonOverlappingTemplate
 16 11 13 10 9 10 9 8 6 8 0.616305 98/100 NonOverlappingTemplate
 14 7 10 10 16 11 7 9 8 8 0.534146 98/100 NonOverlappingTemplate
 9 11 7 12 9 9 10 6 14 13 0.759756 100/100 NonOverlappingTemplate
 13 14 7 11 11 8 15 4 6 11 0.224821 98/100 NonOverlappingTemplate
 6 7 9 13 9 15 16 14 6 5 0.080519 100/100 NonOverlappingTemplate
 9 16 3 11 8 6 14 14 6 13 0.058984 99/100 NonOverlappingTemplate
 10 11 9 10 10 14 10 11 5 10 0.883171 100/100 NonOverlappingTemplate
 9 14 11 12 10 11 7 11 6 9 0.834308 99/100 NonOverlappingTemplate
 15 6 10 7 11 7 9 9 13 13 0.534146 97/100 NonOverlappingTemplate
 10 12 10 11 11 7 13 8 9 9 0.964295 98/100 NonOverlappingTemplate
 10 5 19 9 8 13 9 7 11 9 0.153763 98/100 NonOverlappingTemplate
 6 6 15 5 7 14 13 6 15 13 0.055361 100/100 NonOverlappingTemplate
 9 12 14 7 7 7 10 13 10 11 0.759756 99/100 NonOverlappingTemplate
 12 7 12 14 11 10 13 7 6 8 0.616305 99/100 NonOverlappingTemplate
 16 6 12 10 12 8 9 10 6 11 0.514124 98/100 NonOverlappingTemplate
 8 10 13 9 9 8 13 8 7 15 0.678686 100/100 NonOverlappingTemplate
 17 11 8 16 7 7 11 11 6 6 0.115387 99/100 NonOverlappingTemplate
 11 16 10 8 11 10 11 8 7 8 0.739918 100/100 NonOverlappingTemplate
 8 14 11 8 13 8 6 10 10 12 0.759756 100/100 NonOverlappingTemplate
 8 12 8 16 6 12 11 6 10 11 0.474986 98/100 NonOverlappingTemplate
 15 9 10 8 9 7 9 13 9 11 0.816537 98/100 NonOverlappingTemplate
 11 12 11 7 14 12 8 8 8 9 0.851383 99/100 NonOverlappingTemplate
 13 12 11 12 1 16 11 7 7 10 0.080519 100/100 NonOverlappingTemplate
 10 10 10 12 13 4 11 14 6 10 0.514124 98/100 NonOverlappingTemplate
 4 7 13 9 14 11 12 10 10 10 0.574903 99/100 NonOverlappingTemplate
 11 8 11 5 11 13 10 7 14 10 0.678686 99/100 NonOverlappingTemplate
 11 10 12 6 7 11 15 10 11 7 0.678686 99/100 NonOverlappingTemplate
 10 6 14 12 11 14 8 9 4 12 0.366918 98/100 NonOverlappingTemplate
 8 8 10 12 14 10 7 8 7 16 0.474986 99/100 NonOverlappingTemplate
 14 12 12 14 12 8 8 7 6 7 0.474986 98/100 NonOverlappingTemplate
 5 8 14 6 8 7 16 13 13 10 0.171867 100/100 NonOverlappingTemplate
 5 11 14 9 14 13 7 8 8 11 0.474986 100/100 NonOverlappingTemplate
 13 13 13 14 4 5 5 11 11 11 0.153763 97/100 NonOverlappingTemplate
 8 12 7 13 8 9 7 13 14 9 0.678686 100/100 NonOverlappingTemplate
 4 10 13 11 12 8 11 15 9 7 0.437274 100/100 NonOverlappingTemplate
 19 17 11 6 7 7 9 8 6 10 0.028817 100/100 NonOverlappingTemplate
 11 7 8 9 15 10 8 15 9 8 0.595549 100/100 NonOverlappingTemplate
 8 10 15 7 12 8 10 11 6 13 0.616305 99/100 NonOverlappingTemplate
 9 10 18 7 9 15 8 8 6 10 0.191687 99/100 NonOverlappingTemplate
 12 10 11 11 11 9 7 12 9 8 0.978072 100/100 NonOverlappingTemplate
 12 10 6 12 15 11 9 8 9 8 0.739918 99/100 NonOverlappingTemplate
 6 11 5 13 9 13 11 12 7 13 0.494392 100/100 NonOverlappingTemplate
 13 10 14 7 12 9 11 11 9 4 0.554420 99/100 NonOverlappingTemplate
 14 10 10 12 9 6 8 11 10 10 0.897763 99/100 NonOverlappingTemplate
 17 11 8 12 11 4 9 7 10 11 0.304126 99/100 NonOverlappingTemplate
 9 16 10 11 8 10 8 14 6 8 0.514124 98/100 NonOverlappingTemplate
 9 5 14 13 8 14 10 12 8 7 0.455937 99/100 NonOverlappingTemplate
 7 7 10 10 11 7 12 13 13 10 0.834308 99/100 NonOverlappingTemplate
 10 8 2 15 9 6 10 16 13 11 0.075719 100/100 NonOverlappingTemplate
 10 20 7 14 10 6 9 12 7 5 0.035174 99/100 NonOverlappingTemplate
 11 16 9 11 5 11 10 12 10 5 0.401199 98/100 NonOverlappingTemplate
 7 10 10 4 8 17 18 8 8 10 0.048716 100/100 NonOverlappingTemplate
 7 10 17 8 13 9 7 8 9 12 0.437274 98/100 NonOverlappingTemplate
 7 8 17 12 14 5 9 7 7 14 0.115387 98/100 NonOverlappingTemplate
 9 14 6 14 6 10 11 10 8 12 0.595549 100/100 NonOverlappingTemplate
 10 5 14 11 10 9 6 12 15 8 0.419021 98/100 NonOverlappingTemplate
 18 9 7 6 9 9 11 10 11 10 0.401199 98/100 NonOverlappingTemplate
 11 8 13 13 10 7 8 12 11 7 0.834308 97/100 NonOverlappingTemplate
 8 9 8 7 9 12 10 12 12 13 0.911413 100/100 NonOverlappingTemplate
 16 12 5 11 9 12 9 10 5 11 0.366918 98/100 NonOverlappingTemplate
 7 11 5 11 12 9 11 11 14 9 0.739918 100/100 NonOverlappingTemplate
 6 11 7 10 10 10 15 8 8 15 0.494392 97/100 NonOverlappingTemplate
 15 16 8 7 9 6 12 8 9 10 0.350485 100/100 NonOverlappingTemplate
 9 12 11 12 7 10 11 6 14 8 0.779188 99/100 NonOverlappingTemplate
 12 10 10 8 9 9 11 11 10 10 0.998821 99/100 NonOverlappingTemplate
 8 12 6 12 16 10 11 10 6 9 0.514124 98/100 NonOverlappingTemplate
 8 9 6 9 17 9 12 10 8 12 0.494392 98/100 NonOverlappingTemplate
 8 15 9 11 14 11 10 7 7 8 0.637119 99/100 NonOverlappingTemplate
 11 11 11 7 13 8 12 8 9 10 0.946308 100/100 NonOverlappingTemplate
 13 9 11 9 10 9 9 10 13 7 0.955835 99/100 NonOverlappingTemplate
 6 14 10 8 7 9 11 11 16 8 0.455937 100/100 NonOverlappingTemplate
 12 15 9 8 8 10 7 9 7 15 0.514124 99/100 NonOverlappingTemplate
 13 7 6 12 10 8 11 11 5 17 0.224821 99/100 NonOverlappingTemplate
 15 16 7 6 9 14 5 11 14 3 0.021999 100/100 NonOverlappingTemplate
 9 11 8 8 12 9 12 6 10 15 0.739918 100/100 NonOverlappingTemplate
 15 19 13 13 5 9 3 7 7 9 0.009535 100/100 NonOverlappingTemplate

Development and Testing of a Hardware Random Number Generator

48

 12 10 10 11 7 9 10 12 7 12 0.955835 97/100 NonOverlappingTemplate
 10 8 13 8 10 12 9 6 12 12 0.867692 98/100 NonOverlappingTemplate
 7 11 6 10 11 9 10 16 9 11 0.678686 99/100 NonOverlappingTemplate
 15 7 6 6 14 13 9 11 12 7 0.304126 100/100 NonOverlappingTemplate
 10 5 16 11 12 6 10 12 9 9 0.455937 98/100 NonOverlappingTemplate
 10 7 11 6 12 11 11 8 14 10 0.816537 99/100 NonOverlappingTemplate
 8 15 10 8 10 5 9 7 10 18 0.153763 96/100 NonOverlappingTemplate
 11 15 14 10 6 8 8 7 6 15 0.236810 98/100 NonOverlappingTemplate
 10 12 6 14 12 9 7 12 6 12 0.595549 98/100 NonOverlappingTemplate
 6 10 9 10 16 14 10 8 11 6 0.437274 100/100 NonOverlappingTemplate
 7 5 11 16 12 12 9 11 7 10 0.437274 100/100 NonOverlappingTemplate
 11 4 16 11 9 8 12 10 9 10 0.494392 98/100 NonOverlappingTemplate
 6 10 14 11 8 8 11 5 11 16 0.319084 100/100 NonOverlappingTemplate
 14 9 9 9 10 14 6 10 10 9 0.816537 99/100 NonOverlappingTemplate
 10 9 12 5 13 12 4 14 11 10 0.383827 99/100 NonOverlappingTemplate
 14 8 10 11 9 8 10 8 13 9 0.911413 99/100 NonOverlappingTemplate
 10 12 7 6 13 10 14 10 6 12 0.595549 100/100 NonOverlappingTemplate
 7 10 7 9 9 14 13 7 8 16 0.401199 100/100 NonOverlappingTemplate
 10 7 10 14 8 11 12 9 13 6 0.739918 100/100 NonOverlappingTemplate
 10 10 10 10 6 16 12 7 8 11 0.637119 99/100 NonOverlappingTemplate
 8 17 7 10 10 14 5 13 8 8 0.213309 99/100 NonOverlappingTemplate
 6 11 13 3 15 13 10 5 14 10 0.090936 97/100 NonOverlappingTemplate
 18 9 7 11 4 14 8 4 12 13 0.035174 99/100 NonOverlappingTemplate
 10 11 6 13 11 8 11 9 12 9 0.924076 99/100 NonOverlappingTemplate
 8 7 8 12 16 15 6 7 10 11 0.289667 99/100 NonOverlappingTemplate
 10 8 12 6 8 5 12 12 11 16 0.366918 100/100 NonOverlappingTemplate
 9 11 15 15 9 3 14 6 9 9 0.137282 99/100 NonOverlappingTemplate
 4 11 12 13 8 11 6 12 10 13 0.494392 99/100 NonOverlappingTemplate
 9 11 13 5 12 12 7 5 17 9 0.171867 100/100 NonOverlappingTemplate
 17 8 10 16 5 3 15 12 7 7 0.012650 96/100 NonOverlappingTemplate
 3 10 10 8 8 9 8 16 16 12 0.129620 100/100 NonOverlappingTemplate
 16 7 14 10 8 8 11 9 7 10 0.534146 97/100 NonOverlappingTemplate
 8 12 12 10 5 12 11 19 5 6 0.058984 99/100 NonOverlappingTemplate
 12 11 6 9 9 13 12 8 7 13 0.759756 100/100 NonOverlappingTemplate
 10 11 16 12 4 11 11 9 8 8 0.455937 99/100 NonOverlappingTemplate
 5 11 6 16 9 8 13 16 7 9 0.129620 100/100 NonOverlappingTemplate
 8 7 13 15 12 11 7 6 12 9 0.514124 100/100 NonOverlappingTemplate
 11 9 12 19 13 13 6 7 2 8 0.019188 99/100 NonOverlappingTemplate
 12 15 11 13 10 14 7 2 9 7 0.129620 97/100 NonOverlappingTemplate
 6 11 5 13 9 12 12 12 7 13 0.514124 100/100 NonOverlappingTemplate
 12 5 11 13 8 9 12 6 9 15 0.437274 99/100 OverlappingTemplate
 18 9 6 9 9 10 10 10 9 10 0.494392 99/100 Universal
 14 10 16 10 4 6 10 8 12 10 0.262249 98/100 ApproximateEntropy
 4 7 6 6 1 6 4 5 4 3 0.534146 46/46 RandomExcursions
 7 6 6 3 6 3 2 6 3 4 0.534146 45/46 RandomExcursions
 2 5 6 6 6 8 4 3 4 2 0.392456 46/46 RandomExcursions
 7 2 4 3 4 5 4 7 7 3 0.484646 46/46 RandomExcursions
 5 1 1 7 5 6 6 9 4 2 0.057146 46/46 RandomExcursions
 7 7 4 4 3 5 6 4 2 4 0.637119 46/46 RandomExcursions
 3 5 1 4 4 6 5 4 5 9 0.311542 45/46 RandomExcursions
 3 3 2 4 7 7 3 5 8 4 0.311542 45/46 RandomExcursions
 8 3 3 6 5 7 3 6 4 1 0.242986 45/46 RandomExcursionsVariant
 7 3 5 5 5 4 3 5 6 3 0.834308 45/46 RandomExcursionsVariant
 7 3 2 6 3 5 5 4 8 3 0.392456 45/46 RandomExcursionsVariant
 6 3 6 4 1 2 5 9 5 5 0.186566 46/46 RandomExcursionsVariant
 7 5 2 6 1 3 3 7 8 4 0.141256 46/46 RandomExcursionsVariant
 7 6 3 3 4 4 5 3 6 5 0.788728 46/46 RandomExcursionsVariant
 6 5 7 3 6 5 1 3 6 4 0.484646 46/46 RandomExcursionsVariant
 3 4 3 5 10 6 1 4 5 5 0.141256 45/46 RandomExcursionsVariant
 3 2 5 6 3 5 5 4 5 8 0.585209 45/46 RandomExcursionsVariant
 2 6 9 3 5 2 2 5 7 5 0.141256 46/46 RandomExcursionsVariant
 3 5 9 2 8 2 5 4 4 4 0.162606 46/46 RandomExcursionsVariant
 3 7 6 6 3 6 4 6 1 4 0.437274 46/46 RandomExcursionsVariant
 3 8 4 6 2 5 5 4 5 4 0.637119 45/46 RandomExcursionsVariant
 4 5 7 4 8 3 2 6 6 1 0.213309 46/46 RandomExcursionsVariant
 4 5 7 5 5 3 4 4 2 7 0.689019 45/46 RandomExcursionsVariant
 5 5 3 4 4 10 3 4 4 4 0.350485 45/46 RandomExcursionsVariant
 5 3 6 4 6 6 1 4 7 4 0.534146 46/46 RandomExcursionsVariant
 5 5 6 6 1 3 6 0 7 7 0.105618 45/46 RandomExcursionsVariant
 6 6 14 17 7 14 10 8 7 11 0.137282 99/100 Serial
 9 11 13 8 9 11 9 7 14 9 0.883171 99/100 Serial
 7 15 8 9 7 8 7 15 12 12 0.401199 99/100 LinearComplexity

-
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 43 for a sample size = 46 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
-

Table 6: the results of testing the output of the ANU Quantum Random Numbers Server
--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--
 generator is <data/quantumrandom.bin>
--
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
--

Development and Testing of a Hardware Random Number Generator

49

 9 4 8 14 15 11 11 9 6 13 0.275709 99/100 Frequency
 5 7 12 13 14 10 10 9 8 12 0.616305 98/100 BlockFrequency
 8 8 10 11 10 12 12 12 9 8 0.978072 99/100 CumulativeSums
 7 9 6 9 14 13 15 10 8 9 0.514124 100/100 CumulativeSums
 10 6 8 11 14 5 14 9 13 10 0.455937 99/100 Runs
 14 12 6 7 7 11 9 12 11 11 0.719747 99/100 LongestRun
 14 11 6 8 9 8 10 12 13 9 0.779188 99/100 Rank
 12 15 8 8 8 7 8 9 11 14 0.616305 99/100 FFT
 7 10 16 13 9 13 6 7 13 6 0.249284 98/100 NonOverlappingTemplate
 7 11 11 11 15 14 8 5 7 11 0.419021 98/100 NonOverlappingTemplate
 4 13 8 14 10 5 7 10 15 14 0.122325 100/100 NonOverlappingTemplate
 4 10 11 9 4 9 12 12 12 17 0.137282 100/100 NonOverlappingTemplate
 14 7 10 8 7 5 12 10 10 17 0.236810 99/100 NonOverlappingTemplate
 8 6 12 20 7 8 13 9 10 7 0.075719 99/100 NonOverlappingTemplate
 9 16 8 9 7 9 16 11 7 8 0.334538 100/100 NonOverlappingTemplate
 7 8 9 7 14 12 14 16 5 8 0.191687 100/100 NonOverlappingTemplate
 9 8 11 7 14 9 17 5 9 11 0.289667 100/100 NonOverlappingTemplate
 7 12 13 6 11 12 10 8 9 12 0.816537 100/100 NonOverlappingTemplate
 14 11 6 11 9 7 6 14 12 10 0.534146 96/100 NonOverlappingTemplate
 10 7 17 3 11 9 8 11 10 14 0.162606 99/100 NonOverlappingTemplate
 7 11 7 10 12 9 13 11 10 10 0.946308 98/100 NonOverlappingTemplate
 11 13 9 14 13 13 11 8 3 5 0.191687 100/100 NonOverlappingTemplate
 7 13 6 12 12 16 9 5 10 10 0.319084 100/100 NonOverlappingTemplate
 19 6 6 8 7 11 9 12 13 9 0.115387 98/100 NonOverlappingTemplate
 11 10 10 10 10 9 15 9 4 12 0.657933 99/100 NonOverlappingTemplate
 5 8 11 12 16 9 9 13 4 13 0.181557 100/100 NonOverlappingTemplate
 8 16 9 9 13 12 7 9 8 9 0.637119 97/100 NonOverlappingTemplate
 4 18 10 10 7 6 15 6 10 14 0.032923 100/100 NonOverlappingTemplate
 10 8 14 6 11 7 10 5 22 7 0.007694 100/100 NonOverlappingTemplate
 13 8 11 11 11 9 9 11 9 8 0.983453 98/100 NonOverlappingTemplate
 12 13 9 8 7 7 9 12 15 8 0.637119 98/100 NonOverlappingTemplate
 7 6 11 9 13 14 11 12 6 11 0.595549 99/100 NonOverlappingTemplate
 9 12 13 9 10 7 13 8 8 11 0.897763 98/100 NonOverlappingTemplate
 12 11 10 18 8 8 6 6 8 13 0.202268 100/100 NonOverlappingTemplate
 12 13 9 6 10 10 6 15 9 10 0.616305 97/100 NonOverlappingTemplate
 14 8 10 10 6 11 8 11 7 15 0.574903 97/100 NonOverlappingTemplate
 7 8 8 16 6 10 13 11 10 11 0.534146 100/100 NonOverlappingTemplate
 12 13 5 16 8 13 9 9 10 5 0.249284 100/100 NonOverlappingTemplate
 12 11 8 12 10 12 11 9 7 8 0.955835 99/100 NonOverlappingTemplate
 9 8 7 9 14 9 11 13 8 12 0.834308 99/100 NonOverlappingTemplate
 7 7 10 5 12 13 13 9 14 10 0.514124 98/100 NonOverlappingTemplate
 10 13 6 9 13 16 5 12 10 6 0.236810 100/100 NonOverlappingTemplate
 11 9 9 11 9 10 9 13 7 12 0.971699 98/100 NonOverlappingTemplate
 10 15 12 13 8 8 12 8 6 8 0.595549 95/100 * NonOverlappingTemplate
 12 13 8 9 9 11 7 7 12 12 0.867692 100/100 NonOverlappingTemplate
 11 14 8 8 7 5 14 15 9 9 0.334538 100/100 NonOverlappingTemplate
 10 6 8 10 8 5 12 14 14 13 0.401199 99/100 NonOverlappingTemplate
 9 8 7 8 12 11 9 14 12 10 0.883171 99/100 NonOverlappingTemplate
 12 9 11 9 9 6 12 5 12 15 0.514124 100/100 NonOverlappingTemplate
 8 9 12 11 13 13 10 8 6 10 0.851383 99/100 NonOverlappingTemplate
 11 9 13 13 14 5 7 10 8 10 0.595549 99/100 NonOverlappingTemplate
 9 10 10 9 9 6 13 13 13 8 0.834308 99/100 NonOverlappingTemplate
 11 12 13 5 13 9 11 8 6 12 0.595549 100/100 NonOverlappingTemplate
 10 9 11 6 9 11 6 13 11 14 0.719747 100/100 NonOverlappingTemplate
 7 13 7 6 10 12 9 10 13 13 0.678686 98/100 NonOverlappingTemplate
 7 15 13 6 13 8 7 9 8 14 0.334538 100/100 NonOverlappingTemplate
 11 8 7 9 12 8 12 9 13 11 0.924076 99/100 NonOverlappingTemplate
 12 9 9 15 9 10 7 7 11 11 0.816537 100/100 NonOverlappingTemplate
 9 8 8 14 8 11 5 4 16 17 0.040108 99/100 NonOverlappingTemplate
 7 8 12 7 18 6 13 9 10 10 0.236810 98/100 NonOverlappingTemplate
 9 14 8 9 16 7 8 8 8 13 0.455937 97/100 NonOverlappingTemplate
 11 13 11 11 12 7 8 10 6 11 0.867692 99/100 NonOverlappingTemplate
 6 7 13 10 13 5 12 11 12 11 0.554420 100/100 NonOverlappingTemplate
 12 12 10 9 9 9 9 12 9 9 0.994250 99/100 NonOverlappingTemplate
 6 9 13 11 13 12 10 7 9 10 0.834308 100/100 NonOverlappingTemplate
 17 10 12 7 7 14 9 6 10 8 0.289667 98/100 NonOverlappingTemplate
 9 17 6 8 10 9 10 6 14 11 0.319084 98/100 NonOverlappingTemplate
 10 7 7 9 14 9 13 10 10 11 0.867692 98/100 NonOverlappingTemplate
 9 14 9 14 8 9 9 7 5 16 0.275709 100/100 NonOverlappingTemplate
 13 8 9 11 11 8 8 8 15 9 0.798139 100/100 NonOverlappingTemplate
 10 19 10 10 9 8 2 8 11 13 0.058984 100/100 NonOverlappingTemplate
 8 10 12 12 12 11 7 7 11 10 0.935716 100/100 NonOverlappingTemplate
 7 10 16 12 10 12 8 13 4 8 0.304126 99/100 NonOverlappingTemplate
 14 6 10 6 9 14 9 11 12 9 0.616305 100/100 NonOverlappingTemplate
 5 10 14 7 13 4 10 14 13 10 0.213309 99/100 NonOverlappingTemplate
 10 8 12 7 7 12 9 9 12 14 0.816537 99/100 NonOverlappingTemplate
 17 7 8 9 15 7 5 11 10 11 0.191687 98/100 NonOverlappingTemplate
 12 6 11 14 12 10 10 7 12 6 0.637119 99/100 NonOverlappingTemplate
 10 8 6 14 9 9 13 6 12 13 0.574903 100/100 NonOverlappingTemplate
 10 8 13 8 11 13 14 8 5 10 0.616305 100/100 NonOverlappingTemplate
 7 8 15 8 12 11 11 11 8 9 0.798139 99/100 NonOverlappingTemplate
 10 4 10 10 12 16 11 9 8 10 0.514124 98/100 NonOverlappingTemplate
 7 10 16 13 9 13 6 8 12 6 0.319084 98/100 NonOverlappingTemplate
 6 9 12 11 10 9 12 9 15 7 0.719747 99/100 NonOverlappingTemplate
 8 12 7 12 11 10 15 8 10 7 0.739918 99/100 NonOverlappingTemplate
 10 10 6 13 9 11 9 16 8 8 0.616305 100/100 NonOverlappingTemplate
 13 6 12 13 9 8 11 8 11 9 0.834308 99/100 NonOverlappingTemplate
 13 8 8 12 5 10 11 13 5 15 0.304126 98/100 NonOverlappingTemplate
 11 5 8 16 12 7 17 11 8 5 0.071177 99/100 NonOverlappingTemplate
 13 10 9 15 12 8 11 6 5 11 0.474986 99/100 NonOverlappingTemplate
 10 13 12 4 17 8 10 9 6 11 0.213309 99/100 NonOverlappingTemplate
 7 12 11 13 9 8 14 6 8 12 0.657933 100/100 NonOverlappingTemplate
 6 13 10 12 5 16 3 16 9 10 0.040108 100/100 NonOverlappingTemplate
 5 13 9 15 12 5 12 7 12 10 0.304126 100/100 NonOverlappingTemplate
 11 11 9 12 5 15 8 9 8 12 0.637119 99/100 NonOverlappingTemplate
 11 17 9 5 7 9 15 8 10 9 0.236810 99/100 NonOverlappingTemplate
 7 13 8 11 10 12 7 8 12 12 0.851383 100/100 NonOverlappingTemplate

Development and Testing of a Hardware Random Number Generator

50

 8 8 9 10 14 7 12 11 11 10 0.911413 100/100 NonOverlappingTemplate
 8 7 13 14 7 10 9 9 10 13 0.759756 99/100 NonOverlappingTemplate
 9 12 6 13 13 7 8 8 11 13 0.678686 98/100 NonOverlappingTemplate
 10 7 8 17 5 8 7 13 11 14 0.181557 98/100 NonOverlappingTemplate
 9 18 14 13 6 8 8 6 8 10 0.145326 99/100 NonOverlappingTemplate
 8 9 9 13 4 12 15 6 10 14 0.262249 98/100 NonOverlappingTemplate
 7 8 14 5 11 7 7 15 12 14 0.224821 100/100 NonOverlappingTemplate
 14 3 9 13 10 15 12 6 7 11 0.162606 100/100 NonOverlappingTemplate
 7 3 13 14 10 11 9 9 11 13 0.383827 100/100 NonOverlappingTemplate
 10 9 10 17 6 9 15 5 7 12 0.162606 100/100 NonOverlappingTemplate
 8 11 7 11 11 6 14 15 10 7 0.514124 100/100 NonOverlappingTemplate
 8 15 11 10 10 10 9 7 12 8 0.851383 100/100 NonOverlappingTemplate
 9 12 8 10 12 15 11 6 8 9 0.739918 99/100 NonOverlappingTemplate
 9 11 7 10 7 12 13 12 7 12 0.834308 98/100 NonOverlappingTemplate
 9 7 18 12 9 10 8 7 7 13 0.275709 99/100 NonOverlappingTemplate
 5 9 10 14 7 13 13 5 15 9 0.213309 100/100 NonOverlappingTemplate
 10 12 12 6 9 11 4 13 13 10 0.534146 99/100 NonOverlappingTemplate
 8 19 14 0 8 7 9 16 12 7 0.001757 99/100 NonOverlappingTemplate
 12 9 9 11 3 8 10 12 15 11 0.437274 100/100 NonOverlappingTemplate
 12 10 11 10 10 9 7 12 9 10 0.991468 99/100 NonOverlappingTemplate
 7 5 12 9 15 14 7 12 8 11 0.366918 98/100 NonOverlappingTemplate
 9 11 10 11 8 10 9 12 11 9 0.997823 100/100 NonOverlappingTemplate
 13 12 11 5 9 10 7 10 14 9 0.678686 100/100 NonOverlappingTemplate
 9 11 11 11 9 18 8 4 13 6 0.145326 99/100 NonOverlappingTemplate
 8 9 9 8 11 11 14 8 12 10 0.935716 100/100 NonOverlappingTemplate
 8 12 11 8 12 6 13 12 10 8 0.834308 100/100 NonOverlappingTemplate
 9 12 9 12 15 8 8 9 12 6 0.699313 99/100 NonOverlappingTemplate
 13 10 8 9 15 14 4 9 7 11 0.334538 99/100 NonOverlappingTemplate
 10 13 7 9 10 11 8 10 11 11 0.978072 98/100 NonOverlappingTemplate
 12 7 8 6 13 14 12 11 9 8 0.657933 99/100 NonOverlappingTemplate
 7 9 7 12 16 8 9 11 6 15 0.304126 100/100 NonOverlappingTemplate
 8 11 9 11 5 11 14 15 7 9 0.494392 100/100 NonOverlappingTemplate
 11 7 12 17 5 13 5 7 12 11 0.137282 100/100 NonOverlappingTemplate
 11 11 13 13 10 7 9 7 9 10 0.911413 100/100 NonOverlappingTemplate
 11 12 8 11 12 12 13 10 9 2 0.419021 98/100 NonOverlappingTemplate
 17 8 11 3 11 10 5 13 14 8 0.071177 99/100 NonOverlappingTemplate
 15 9 13 11 12 5 12 9 8 6 0.437274 99/100 NonOverlappingTemplate
 11 11 13 14 10 8 10 6 8 9 0.816537 98/100 NonOverlappingTemplate
 10 4 7 19 10 8 8 12 11 11 0.122325 99/100 NonOverlappingTemplate
 13 9 10 13 5 14 9 8 9 10 0.678686 100/100 NonOverlappingTemplate
 12 13 10 14 4 6 15 10 9 7 0.236810 96/100 NonOverlappingTemplate
 12 7 9 6 16 10 8 4 9 19 0.026948 99/100 NonOverlappingTemplate
 8 12 6 8 14 9 9 6 15 13 0.383827 100/100 NonOverlappingTemplate
 12 10 10 7 9 7 8 12 16 9 0.657933 100/100 NonOverlappingTemplate
 6 14 14 7 8 9 9 9 7 17 0.202268 99/100 NonOverlappingTemplate
 9 9 10 14 11 8 7 9 6 17 0.366918 97/100 NonOverlappingTemplate
 13 7 14 6 12 9 9 11 9 10 0.759756 100/100 NonOverlappingTemplate
 8 13 18 11 10 5 3 11 9 12 0.071177 99/100 NonOverlappingTemplate
 9 12 14 12 8 7 6 12 8 12 0.678686 98/100 NonOverlappingTemplate
 5 9 5 11 19 12 8 13 7 11 0.066882 100/100 NonOverlappingTemplate
 6 13 8 11 10 9 12 11 7 13 0.798139 100/100 NonOverlappingTemplate
 9 9 7 12 11 12 12 9 8 11 0.964295 99/100 NonOverlappingTemplate
 6 11 9 8 11 10 15 15 7 8 0.474986 100/100 NonOverlappingTemplate
 11 10 8 7 9 11 14 13 5 12 0.637119 100/100 NonOverlappingTemplate
 5 13 13 7 9 8 12 7 7 19 0.066882 99/100 NonOverlappingTemplate
 3 13 13 7 12 8 14 10 11 9 0.334538 100/100 NonOverlappingTemplate
 14 11 10 6 15 9 4 12 11 8 0.319084 99/100 NonOverlappingTemplate
 13 5 9 15 10 9 5 12 10 12 0.401199 98/100 NonOverlappingTemplate
 10 4 10 10 12 16 11 9 8 10 0.514124 98/100 NonOverlappingTemplate
 6 12 9 10 12 7 10 10 9 15 0.739918 100/100 OverlappingTemplate
 11 8 12 19 8 9 12 7 5 9 0.145326 99/100 Universal
 9 8 4 10 13 12 9 15 9 11 0.514124 100/100 ApproximateEntropy
 10 5 6 7 3 3 5 3 11 5 0.075719 57/58 RandomExcursions
 9 5 7 6 7 7 3 3 3 8 0.350485 58/58 RandomExcursions
 7 6 4 8 4 5 4 4 9 7 0.574903 57/58 RandomExcursions
 4 6 6 9 6 10 3 3 7 4 0.236810 58/58 RandomExcursions
 5 4 10 8 7 2 2 5 10 5 0.058984 58/58 RandomExcursions
 3 7 2 6 6 9 7 6 8 4 0.350485 58/58 RandomExcursions
 5 5 4 7 3 7 4 4 4 15 0.005762 57/58 RandomExcursions
 6 1 11 4 5 7 5 9 5 5 0.096578 57/58 RandomExcursions
 9 5 2 8 7 7 4 7 5 4 0.383827 58/58 RandomExcursionsVariant
 4 5 13 5 6 4 10 2 7 2 0.006661 58/58 RandomExcursionsVariant
 3 8 10 7 5 5 3 7 2 8 0.137282 58/58 RandomExcursionsVariant
 5 8 6 6 6 4 6 6 4 7 0.911413 58/58 RandomExcursionsVariant
 5 9 5 8 5 3 4 5 5 9 0.419021 57/58 RandomExcursionsVariant
 5 6 7 7 7 8 5 4 6 3 0.779188 58/58 RandomExcursionsVariant
 3 6 10 6 6 4 8 6 3 6 0.383827 58/58 RandomExcursionsVariant
 4 6 12 5 7 5 4 4 5 6 0.236810 58/58 RandomExcursionsVariant
 11 3 5 6 5 3 5 8 4 8 0.171867 58/58 RandomExcursionsVariant
 4 7 8 3 12 4 4 7 6 3 0.075719 58/58 RandomExcursionsVariant
 5 6 11 1 3 9 10 3 5 5 0.015598 58/58 RandomExcursionsVariant
 7 6 6 6 3 7 6 5 5 7 0.911413 58/58 RandomExcursionsVariant
 8 5 6 1 8 6 6 5 7 6 0.494392 57/58 RandomExcursionsVariant
 8 5 3 3 5 6 10 6 7 5 0.383827 56/58 RandomExcursionsVariant
 6 5 9 4 7 3 5 8 7 4 0.534146 56/58 RandomExcursionsVariant
 6 5 11 4 7 5 6 4 4 6 0.419021 57/58 RandomExcursionsVariant
 4 5 9 10 4 5 7 5 5 4 0.383827 57/58 RandomExcursionsVariant
 5 7 3 10 9 7 4 4 6 3 0.213309 56/58 RandomExcursionsVariant
 8 8 9 10 15 6 5 19 8 12 0.058984 99/100 Serial
 7 14 6 12 9 10 8 14 10 10 0.678686 100/100 Serial
 9 9 12 7 12 10 9 13 10 9 0.964295 100/100 LinearComplexity

-
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.

Development and Testing of a Hardware Random Number Generator

51

The minimum pass rate for the random excursion (variant) test
is approximately = 55 for a sample size = 58 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
-

Development and Testing of a Hardware Random Number Generator

52

5. Conclusion

Everyone has a vague idea of what a random number is and how it can be achieved.
It is a number that cannot be reproduced by an obvious rule, which means that it
either results from an unpredictable physical process or from a complex, non-trivial
calculation. Unpredictable physical processes are the golden standard of random
number generation and either have or do not have quantum properties. Random
number generators that are based on them are called “true”. Quantum randomness
has two important advantages: 1) randomness is in its nature; it does not merely
appear to be random because of our lack of knowledge about it, it is intrinsically
unpredictable and 2) security is guaranteed – previous output bears no resemblance
to the future output and vice versa. The disadvantages of quantum randomness are
that it is generated by specialized hardware, which, for the sake of software
creation, needs to be avoided. There are physical sources that do not have
quantum properties but can be just as good, and most of them are based on noise.
There have been attempts to use computer hardware or user input to generate
randomness, unfortunately, they end up being either impractical or insecure.

The security of random number generators can be tested through hands-on brute
force approaches, which takes a vast amount of resources, including time. It is the
only way to assess the generator and not simply its output and is known under a
broad name – cryptanalysis. Other, less resource-consuming methods use the
probabilistic method and data compression. The probabilistic method involves
assessing the probability with which the generated sequences occur naturally. The
data compression approach assesses the rate at which the generated sequence can
be compressed to a smaller bulk of data.

Apart from security, random number generators must fulfill other requirements
mostly defined by the purpose of their utilization, e.g. the speed with which the
output is produced, repeatability of sequences and distribution of values.

The decision between the two methods of random number generation (hardware
and algorithmic) is not a trivial one. While the hardware random number generators
do not possess a source code that can be utilized by an attacker, they are
oftentimes slow and sometimes unreliable due to interference, hardware defects
and flaws in digitalization and subsequent de-skewing of data. The algorithmic
approach, albeit faster, survives under the principle of computational security, i.e.
that an attacker could not predict the future or decipher the past output in realistic
time.

Thus, it is best to combine both approaches in a mutually beneficial manner to
balance out their deficiencies.

The hardware solutions I tested showed promise but were in need of improvement.

Development and Testing of a Hardware Random Number Generator

53

The circuit around the Zener diode appeared to have a flaw in registering the
voltage flowing through the diode and thereby, skewing the output in favor of zero
values. This method also appeared to be slow, but with price-effective components
and provided sufficient de-skewing, it could be used to fill an entropy pool for a
pseudorandom generator, e.g. the LRNG at /dev/random, which in itself possesses
good statistical properties and a lot of security measures, like the mixing of the
entropy pool after each generated sequence.

The atmospheric noise generator I tested was significantly faster than the Z-
breakdown generator and showed good statistical properties, but I see potential
risks for its utilization because of interference. Since there is an on-going trend
towards mobile devices, I would be wary of using an atmospheric-noise generator
for portable appliances, especially because there was, as of yet, not a lot of research
exists on portable generators.

There is a lot of research yet to be done on random number generation and testing
with ever-advancing computational power, but for now, cryptographically secure
pseudorandom generators coupled with true random entropy pools are a
universally friendly source of randomness.

Development and Testing of a Hardware Random Number Generator

54

Bibliography

[1] G. J. Chaitin, Information, Randomness & Incompleteness. World Scientific,
1990.

[2] J. Schiller and S. Crocker, “Standards Track,” D. Eastlake, 3rd, Motorola
Laboratories, Jun. 2005.

[3] M. Fischlin and J.-S. Coron, Advances in Cryptology – EUROCRYPT 2016,
vol. 9665. Berlin, Heidelberg: Springer, 2016.

[4] “Digital Signature Algorithm.” Wikipedia.
[5] D. G. Boak, “A History of U.S. Communications Security (Volumes I and II),”

governmentattic.org, 24-Dec-2008.
[6] J. Moser, “The First Few Milliseconds of an HTTPS Connection,”

moserware.com, 10-Jun-2009. [Online]. Available:
http://www.moserware.com/2009/06/first-few-milliseconds-of-https.html.
[Accessed: 15-May-2016].

[7] Chi-squared Test, vol. 11. YouTube, 2011.
[8] L. E. I. Bassham, “NIST SP 800-22, Revision1a, A Statistical Test Suite for

Random and Pseudorandom Number Generators for Cryptographic
Applications,” Apr. 2010.

[9] “Diehard tests.” [Online]. Available:
http://en.wikipedia.org/wiki/Diehard%20tests. [Accessed: 15-May-16AD].

[10] “Random Bitmap Generator,” random.org. [Online]. Available:
https://www.random.org/bitmaps/. [Accessed: 01-Jul-2016].

[11] D. Salomon, Data Compression. Springer, 2012.
[12] A. Young and M. Yung, Malicious Cryptography. John Wiley & Sons, 2004.
[13] I. Poole, “RF Thermal Noise | Johnson-Nyquist Noise | Tutorial,” radio-

electronics.com. [Online]. Available: http://www.radio-
electronics.com/info/rf-technology-design/noise/thermal-johnson-nyquist-
basics-tutorial.php. [Accessed: 31-May-2016].

[14] D. G. Marangon, G. Vallone, and P. Villoresi, “Random bits, true and
unbiased, from atmospheric turbulence,” Scientific Reports, vol. 4, pp. 5490
EP –, Jun. 2014.

[15] R. Soorat, M. K, and A. Vudayagiri, “Hardware Random number Generator
for cryptography,” arXiv.org, vol. physics.comp-ph. 05-Oct-2015.

[16] “onerng.info,” onerng.info. [Online]. Available: http://onerng.info.
[Accessed: 02-May-2016].

[17] J. Thomas, “xr232usb,” jtxp.org, Sep-2011. [Online]. Available:
http://www.jtxp.org/tech/xr232usb_en.htm. [Accessed: 28-Jul-2016].

[18] J. Thomas, “XR232 - Echter Zufall und echtes RS232-Protokoll,” jtxp.org.
[Online]. Available: http://www.jtxp.org/tech/xr232web.htm. [Accessed: 02-
May-2016].

Development and Testing of a Hardware Random Number Generator

55

[19] A. Toponce, “Hardware RNG Through an rtl-sdr Dongle,” pthree.org, 16-
Jun-2015. [Online]. Available: https://pthree.org/2015/06/16/hardware-rng-
through-an-rtl-sdr-dongle/. [Accessed: 29-Jul-2016].

[20] “RANDU,” en.wikipedia.org. [Online]. Available:
http://en.wikipedia.org/wiki/RANDU. [Accessed: 09-Jun-2016].

[21] “Cryptographically secure pseudorandom number generator.” Wikipedia.
[22] T. Hühn, “Myths about /dev/urandom,” 2uo.de. [Online]. Available:

http://www.2uo.de/myths-about-urandom/. [Accessed: 15-May-2016].
[23] R. O. Gilbert, “Evaluation of four pseudo-random number generators,” May

1973.
[24] H. G. Katzgraber, “Random Numbers in Scientific Computing: An

Introduction,” arXiv.org, vol. physics.comp-ph. 22-May-2010.
[25] R. Oppliger, Contemporary Cryptography, Second Edition. Artech House,

2011.
[26] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the Linux random

number generator,” presented at the 2006 IEEE Symposium on Security and
Privacy (S&P'06, 2006, pp. 15 pp.–385.

